idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
12.09.2018 11:00

Elektronensysteme: Präzise Untersuchung einzelner Randkanäle

Celine Eugster Kommunikation & Marketing
Universität Basel

    Mit einer neuen Methode lässt sich erstmals ein individueller Fingerabdruck von stromleitenden Randkanälen erstellen, wie sie in neuartigen Materialien wie zum Beispiel topologischen Isolatoren vorkommen. Physiker der Universität Basel stellen das Verfahren zusammen mit amerikanischen Wissenschaftlern in «Nature Communications» vor.

    Während Isolatoren keinen elektrischen Strom leiten, gibt es einige Materialien, die über besondere elektrische Eigenschaften verfügen: sie können zwar nicht in ihrem Innern, aber aufgrund von Quanteneffekten an ihrer Oberfläche und an ihren Rändern elektrische Ströme übermitteln, und dies sogar verlustfrei.

    Diese sogenannten topologischen Isolatoren stehen seit einigen Jahren im Fokus der Festkörperforschung, da ihre besonderen Eigenschaften technologische Innovationen versprechen – beispielsweise für elektronische Bauelemente.

    Stromfluss nur am Rand

    Ähnliche Effekte wie die Randströme in den topologischen Isolatoren zeigen sich auch, wenn ein zweidimensionales Metall bei tiefen Temperaturen einem starken Magnetfeld ausgesetzt wird. Tritt der sogenannte Quanten-Hall-Effekt ein, fliesst Strom nur noch an den Grenzflächen. Dabei bilden sich mehrere stromleitende Bereiche.

    Individuelle Untersuchung möglich

    Bisher war es nicht möglich, diese leitenden Bereiche individuell zu untersuchen beziehungsweise die Position eines einzelnen Randzustands zu messen. Ein neues Verfahren erlaubt nun erstmals, einen exakten Fingerabdruck der leitenden Bereiche mit einer Auflösung im Nanometerbereich zu erstellen.

    Dies berichten Forscher des Departements Physik und des Swiss Nanoscience Institutes der Universität Basel zusammen mit Kollegen der University of California Los Angeles sowie der Universitäten Harvard und Princeton (USA).

    Zur Messungen der leitenden Bereiche haben sich die Physiker um Professor Dominik Zumbühl von der Universität Basel die Tunnelspektroskopie zunutze gemacht.

    Sie verwenden einen Nanodraht aus Galliumarsenid, der sich auf dem Rand der Probe befindet und parallel zu den Randkanälen verläuft. Elektronen können nun zwischen dem Nanodraht und spezifischen Randzuständen hin und her hüpfen (tunneln), falls die Impulse in beiden Systemen übereinstimmen. Mithilfe eines zweiten Magnetfeldes kontrollieren die Wissenschaftler den Impuls der tunnelnden Elektronen, wodurch sie einzelne Randzustände individuell ansteuern können. Aus den gemessenen Tunnelströmen lassen sich die Position und der Verlauf jedes Randzustands mit einer Präzision im Nanometerbereich berechnen.

    Mehr als eine Momentaufnahme

    Wird bei Quanten-Hall-Systemen die Stärke des angelegten Magnetfeldes erhöht, ändert sich die Verteilung der Randzustände und ihre Anzahl sinkt. Mit der neuen Methode konnten die Wissenschaftler erstmals den gesamten Verlauf der Randzustände inklusive ihrer Entstehung bei kleinen Magnetfeldern beobachten.

    Mit zunehmender Magnetfeldstärke werden die Randzustände zunächst gegen den Materialrand gedrückt und wandern schliesslich in die Mitte der Probe, wo sie vollständig verschwinden. Analytische und numerische Modelle, die das Forscherteam erstellt hat, stimmten sehr gut mit den experimentellen Daten überein.

    «Wir können diese neue Technik nicht nur zur Untersuchung des Quanten-Hall-Effektes einsetzen», kommentiert Dominik Zumbühl die Ergebnisse der internationalen Zusammenarbeit. «Auch bei der Untersuchung exotischer neuer Materialien wie beispielsweise topologischen Isolatoren, Graphen oder anderer 2D-Materialien erhoffen wir bahnbrechende Erkenntnisse durch Anwendung der neuen Methode.»


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Dominik Zumbühl, Universität Basel, Departement Physik, Tel. +41 61 207 36 93, E-Mail: dominik.zumbuhl@unibas.ch


    Originalpublikation:

    T. Patlatiuk, C. P. Scheller, D. Hill, Y. Tserkovnyak, G. Barak, A. Yacoby, L. N. Pfeiffer, K.W. West, and D. M. Zumbühl
    Evolution of the quantum Hall bulk spectrum into chiral edge states
    Nature Communications (2018), doi: 10.1038/s41467-018-06025-3


    Bilder

    Gemessener Tunnelstrom in Abhängigkeit der beiden angelegten Magnetfelder: Die Fächer aus roten und gelben Kurven entsprechen jeweils einem «Fingerabdruck» der leitenden Randzustände.
    Gemessener Tunnelstrom in Abhängigkeit der beiden angelegten Magnetfelder: Die Fächer aus roten und ...
    Bild: Universität Basel, Departement Physik
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Gemessener Tunnelstrom in Abhängigkeit der beiden angelegten Magnetfelder: Die Fächer aus roten und gelben Kurven entsprechen jeweils einem «Fingerabdruck» der leitenden Randzustände.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).