Erstmals gemessen: Wie lange dauert ein Quantensprung?

idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
20.09.2018 10:27

Erstmals gemessen: Wie lange dauert ein Quantensprung?

Dr. Florian Aigner Büro für Öffentlichkeitsarbeit
Technische Universität Wien

    Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

    Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche herausgelöst. Albert Einstein konnte dieses Phänomen 1905 erstmals erklären, indem er von „Lichtquanten“ sprach – den kleinsten Einheiten des Lichts, die wir heute Photonen nennen.

    In winzigen Sekundenbruchteilen absorbiert das Elektron ein Photon und „springt“ dabei in einen anderen Zustand, in dem es die Oberfläche des Materials verlassen kann. Dieser „photoelektrische Effekt“ läuft so schnell ab, dass man ihn bisher meist als instantan betrachtete – als plötzliche Zustandsänderung, von einem Augenblick zum nächsten. Neue Messmethoden sind allerdings so präzise, dass es nun möglich wurde, den Ablauf eines solchen Prozesses zu beobachten und seine Dauer genau zu vermessen. Ein Team der TU Wien ermittelte gemeinsam mit einem Team des ehemaligen TU Wien-Forschers Reinhard Kienberger von der TU München, sowie Forschungsgruppen aus Garching und Berlin die Dauer der Quantensprünge von Elektronen einer Wolfram-Oberfläche. Veröffentlicht wurden die Ergebnisse nun im Fachjournal „Nature“.

    Messen auf Attosekundenskala

    Der photoelektrische Effekt spielt in vielen technischen Bereichen eine wichtige Rolle, etwa in Solarzellen oder bei der Umwandlung von Daten aus dem Glasfaserkabel in elektrische Signale. Er ereignet sich auf eine Zeitskala im Attosekundenbereich, das sind Milliardstel einer Milliardstelsekunde.

    „Mit Hilfe ultrakurzer Laserpulse gelang es in den letzten Jahren, einen Einblick in den zeitlichen Ablauf solcher Effekte zu bekommen“, erklärt Prof. Joachim Burgdörfer vom Institut für Theoretische Physik der TU Wien. „Wir konnten etwa gemeinsam mit unseren Kollegen aus Deutschland den Zeitabstand zwischen verschiedenen Quantensprüngen bestimmen und zeigen, dass unterschiedliche Quantensprünge unterschiedlich lange dauern.“ Allerdings konnte man bisher nur Zeitdifferenzen, nicht aber die absolute Zeitdauer ermitteln, weil es sehr schwer ist, eine „Uhr“ zu finden, die exakt zu Beginn des Quantensprungs zu ticken beginnt. Genau das ist nun durch die Kombination von mehreren Experimenten, Computersimulationen und theoretischen Berechnungen möglich geworden.

    Drei atomare Uhren

    Man musste daher Schritt für Schritt vorgehen: Um eine absolute, fest geeichte Vergleichsskala zu haben untersuchte man zunächst Elektronen, die mit Hilfe von Lasern aus Helium-Atomen herausgerissen werden. „Das Helium-Atom ist sehr einfach gebaut, daher kann man den zeitlichen Ablauf der Photoemission bei Helium-Atomen exakt berechnen. Für kompliziertere Objekte, etwa Metalloberflächen, wäre das selbst mit den besten Supercomputern der Welt nicht möglich“, erklärt Prof. Christoph Lemell.

    Die Helium-Atome verwendete man daraufhin als Referenz-Uhr: In einem zweiten Experiment verglich man die Photoemission von Helium und Iod und eichte so die „Iod-Uhr“. Im dritten und letzten Schritt konnte man dann schließlich die Iod-Atome verwenden, um den tatsächlich gesuchten Effekt zu studieren – nämlich die Photoemission von Elektronen aus einer Wolfram-Oberfläche. Man brachte die Iod-Atome auf Wolfram auf und beschoss die Oberfläche mit ultrakurzen Laserpulsen – nun dienten die Iod-Atome als Referenz, mit der man die Photoemission aus der Wolfram-Oberfläche messen konnte.

    Man arbeitet dabei mit einem extrem kurzen Laserpuls mit hoher Energie. Er ist der Startschuss, mit dem der Prozess beginnt. Daraufhin lösen sich die Elektronen von ihren Atomen und springen in einen frei beweglichen Quantenzustand In dem sie die Materialoberfläche erreichen und aus dem Wolfram austreten können. „Bei Wolfram lässt sich die Dauer dieses Vorgangs besonders gut untersuchen, weil sich dort die Grenzfläche des Materials besonders genau definiert lässt“, erklärt Prof. Florian Libisch. „Die Wolfram-Oberfläche ist eine ausgezeichnete Ziellinie für die Elektronen-Zeitmessung.“

    Die Dauer des Photoemissions-Prozesses hängt vom Anfangszustand der Elektronen ab. Sie reichen von 100 Attosekunden für Elektronen aus den inneren Schalen der Wolfram-Atome bis zu 45 Attosekunden für Leitungselektronen, die im Mittel die Ziellinie schneller passieren. Die Messungen wurden vom Team der TU München in Garching durchgeführt. Florian Libisch, Christoph Lemell und Joachim Burgdörfer von der TU Wien waren für den theoretische Arbeiten und Computersimulationen zuständig.

    Aber natürlich liegt das Ziel des Forschungsprojekts nicht alleine im Vermessen der Dauer eines Quanteneffekts. „Es ist ein spannendes Forschungsgebiet, das ungeheuer viele neue Einblicke liefert – in die Oberflächenphysik, aber auch in Elektronen-Transportvorgänge im Inneren von Materialien“, betont Joachim Burgdörfer. Es gibt uns heute die Möglichkeit, wichtige physikalische Vorgänge mit einer Genauigkeit zu studieren, die vor einigen Jahren noch unvorstellbar gewesen wäre.“


    Wissenschaftliche Ansprechpartner:

    Prof. Joachim Burgdörfer
    Institut für Theoretische Physik
    Technische Universität Wien
    Wiedner Hauptstraße 8-10, 1040 Wien
    joachim.burgdoerfer@tuwien.ac.at

    Prof. Christoph Lemell
    Institut für Theoretische Physik
    Technische Universität Wien
    Wiedner Hauptstraße 8-10, 1040 Wien
    T: +43-1-58801-13612
    christoph.lemell@tuwien.ac.at

    Prof. Florian Libisch
    Institut für Theoretische Physik
    Technische Universität Wien
    Wiedner Hauptstraße 8-10, 1040 Wien
    T: +43-1-58801-13608
    florian.libisch@tuwien.ac.at


    Originalpublikation:

    Originalpublikation: M. Ossiander et al., Absolute timing of the photoelectric effect, Nature (2018).


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


    Ein Laserpuls trifft die Wolfram-Oberfäche, auf der Iod-Atome aufgebracht sind. Sowohl Wolfram- als auch Jod-Atome verlieren Elektronen, die dann gemessen werden.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay