idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
28.09.2018 12:04

Maschinelles Lernen hilft, Photonik-Anwendungen zu optimieren

Dr. Antonia Rötger Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

    Photonische Nanostrukturen erhöhen nicht nur die Effizienz von Solarzellen, sondern verbessern auch die Wirksamkeit von optischen Sensoren, die zum Beispiel als Krebsmarker verwendet werden. Mit Computersimulationen und dem Einsatz von maschinellem Lernen hat nun ein Team am HZB gezeigt, wie sich das Design solcher Nanostrukturen gezielt optimieren lässt. Die Ergebnisse sind in Communications Physics publiziert.

    Mit Nanostrukturen lässt sich die Empfindlichkeit von optischen Sensoren enorm steigern – sofern die Geometrie bestimmte Bedingungen erfüllt und zur Wellenlänge des eingestrahlten Lichts passt. Denn das elektromagnetische Feld des Lichts kann durch die Nanostruktur lokal extrem verstärkt oder abgeschwächt werden. Am HZB arbeitet die Nachwuchsgruppe Nano-SIPPE um Prof. Dr. Christiane Becker daran, solche Nanostrukturen gezielt zu entwickeln. Ein wichtiges Werkzeug dabei sind Computersimulationen. Dr. Carlo Barth aus Beckers Team hat nun mit Einsatz von maschinellem Lernen die wichtigsten Muster der Feldverteilung in einer Nanostruktur identifiziert und damit auch erstmals sehr gut die experimentellen Befunde erklärt.

    Nanostrukturen: Licht bringt Quantenpunkte zum Leuchten

    Die in dieser Arbeit betrachteten photonischen Nanostrukturen bestehen aus einer Siliziumschicht mit einem regelmäßigen Lochmuster, die mit Quantenpunkten aus Bleisulfid beschichtet ist. Angeregt mit einem Laser leuchten die Quantenpunkte durch die lokalen Felderhöhungen wesentlich stärker als auf einer unstrukturierten Oberfläche. Damit lässt sich experimentell zeigen, wie das Laserlicht mit der Nanostruktur wechselwirkt.

    Zehn verschiedene Muster

    Um nun systematisch zu erfassen, was passiert, wenn sich einzelne Parameter der Nanostruktur verändern, berechnete Barth unter Verwendung einer am Zuse-Institut Berlin entwickelten Software für jeden Parametersatz die dreidimensionale Feldverteilung. Diese enormen Datenmengen ließ Barth dann von weiteren Computerprogrammen analysieren, die auf Methoden des maschinellen Lernens basieren. „Der Rechner hat die rund 45.000 Datensätze durchforstet und in etwa zehn unterschiedliche Muster gruppiert“, erklärt Barth. Schließlich gelang es Barth und Becker unter anderen drei Grundmuster herauszukristallisieren, bei denen in verschiedenen spezifischen Bereichen der Nanolöcher die Felder verstärkt sind.

    Sensoren für einzelne Moleküle, zum Beispiel Krebsmarker

    Dies erlaubt nun die Optimierung photonischer Kristallmembranen für praktisch jede Anwendung, die auf Anregungsverstärkung basiert. Denn je nach Anwendung lagern sich manche Biomoleküle zum Beispiel bevorzugt entlang der Lochränder an, andere eher auf den Plateaus zwischen den Löchern. Mit der richtigen Geometrie und der passenden Anregung durch Licht ließe sich dann die maximale Feldverstärkung exakt an den Anlagerungsplätzen der gesuchten Moleküle erzeugen. Damit ließe sich die Sensitivität von optischen Sensoren, beispielsweise für Krebsmarker, bis auf das Niveau von Einzelmolekülen erhöhen.

    Der verwendete Code und auch die Daten stehen frei zum Download zur Verfügung.


    Originalpublikation:

    Die Studie ist publiziert in Communications Physics (2018). “Machine learning classification for field distributions of photonic modes”, Carlo Barth & Christiane Becker

    DOI:10.1038/s42005-018-0060-1


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler
    Biologie, Chemie, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


    Die Simulation zeigt, wie sich nach Anregung das Feld in der Lochmuster-Schicht verteilt. Dabei bilden sich lokale Maxima aus. Dort leuchten die Quantenpunkte besonders stark.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay