Das glimmende Universum

idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
01.10.2018 17:06

Das glimmende Universum

Dr. Janine Fohlmeister Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Astrophysik Potsdam

    Mit dem MUSE-Spektrographen am Very Large Telescope der Europäischen Südsternwarte (ESO) entdeckten Wissenschaftlerinnen und Wissenschaftler riesige kosmische Reservoirs von atomarem Wasserstoff, die ferne Galaxien umgeben. Das internationale Team um Lutz Wisotzki, Professor für Beobachtende Kosmologie am Leibniz-Institut für Astrophysik Potsdam (AIP) und der Universität Potsdam, beobachtete erstmals, wie weit sich die leuchtenden Wasserstoffwolken ins All erstrecken. Darüber berichten die Forscher in der am 11. Oktober erscheinenden Ausgabe der Fachzeitschrift „Nature“.

    Licht bewegt sich sehr schnell, aber mit einer endlichen Geschwindigkeit. Licht, das von extrem weit entfernten Galaxien auf die Erde trifft, stammt also aus der fernen Vergangenheit, als das Universum viele Milliarden Jahre jünger war. Entsprechend lichtschwach sind die Signale von diesen Galaxien und nur die nur die weltweit größten Teleskope mit den besten Sensoren können sie empfangen. MUSE, das Beobachtungsinstrument der nun vorgestellten Beobachtungen, ist ein hochmoderner Integralfeldspektrograph am Paranal-Observatorium der ESO in Chile und wurde durch das AIP mit entwickelt und gebaut. Wenn MUSE den Himmel beobachtet, sieht es die Verteilung der Wellenlängen im Licht, die auf jedes Pixel in seinem Detektoren treffen. Betrachtet man das gesamte Spektrum des Lichts einer Vielzahl astronomischer Objekte, erhält man so tiefe Einblicke in die astrophysikalischen Vorgänge im Universum.

    Von besonderem Interesse für die Astrophysikerinnen und Astrophysiker ist das von kosmischem Wasserstoff erzeugte Licht, die so genannte Lyman-Alpha-Spektrallinie. Anhand der Beobachtungen der Lyman-Alpha-Strahlung ferner Galaxien mit MUSE konnte das Forscherteam nachweisen, dass der Wasserstoff nicht nur wie erwartet innerhalb der Galaxien zu finden ist, sondern dass diese auch von sehr weit ausgedehnten Wasserstoffhüllen umgeben sind. Zwar ist die nachgewiesene Strahlung äußerst lichtschwach, aber dafür so weit verteilt, dass praktisch in jeder Richtung am Himmel zumindest die Außenbereiche der Wasserstoffhüllen sichtbar sind.

    "Zu erkennen, dass der ganze Himmel bei der Beobachtung der Lyman-Alpha-Strahlung aus fernen Wasserstoffwolken optisch leuchtet, war eine buchstäblich augenöffnende Überraschung", erklärt AIP-Wissenschaftler und Teammitglied Dr. Kasper Borello Schmidt.

    Die beobachtete Region ist ein ansonsten unauffälliges Gebiet im Sternbild Fornax („der Ofen“). Im Jahr 2004 wurde sie erstmals vom Hubble-Weltraumteleskop durchmustert. Die damaligen Beobachtungen enthüllten Tausende von Galaxien, die über einen dunklen Himmel verstreut sind und eine beeindruckende Sicht auf die Weite des Universums geben. Dank MUSE war nun ein noch genauerer Blick in diese Region möglich. Die in der Fachzeitschrift Nature veröffentlichte Untersuchung zeigt zum ersten Mal wie dieses „kosmische Glimmen“ aus den Gashüllen der frühesten Galaxien im Licht der Lyman-Alpha-Strahlung verteilt ist.

    "Mit den MUSE-Beobachtungen erhalten wir eine völlig neue Sichtweise auf die diffusen Gaskokons, die Galaxien im frühen Universum umgeben", kommentiert Prof. Dr. Philipp Richter von der Universität Potsdam, Co-Autor der Studie.

    Die spektakuläre Entdeckung der Astronominnen und Astronomen zeigt, dass es solche Wasserstoffwolken gibt und dass sie – wenn auch ungeheuer schwach – leuchten. Die genauen physikalischen Prozesse, die zu der Emission dieser Strahlung führen, sind aber nach wie vor nicht vollständig verstanden. Da sie jedoch, wie das Team nun zeigen konnte, am Nachthimmel allgegenwärtig ist, werden zukünftige Forschungen diese Mechanismen – im wahrsten Sinne des Wortes – erhellen.

    "Wir planen in Zukunft die Durchführung erheblich empfindlicherer Messungen", schließt Teamleiter Lutz Wisotzki. "Wir wollen herausfinden, welche Rolle die riesigen kosmischen Reservoirs atomaren Wasserstoffs im Weltraum für die Entstehung und Entwicklung von Galaxien, auch unserer eigenen Milchstraße, spielen."


    Wissenschaftliche Ansprechpartner:

    Leibniz-Institut für Astrophysik (AIP): Prof. Dr. Lutz Wisotzki, 0331-7499 532, lwisotzki@aip.de

    Universität Potsdam: Prof. Dr. Philipp Richter, 0331-977 1841, prichter@astro.physik.uni-potsdam.de


    Originalpublikation:

    http://dx.doi.org/10.1038/s41586-018-0564-6


    Weitere Informationen:

    http://bit.ly/Glimmendes_Universum


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


    Beobachtungen mit dem MUSE-Spektrographen am Very Large Telescope der ESO zeigen riesige kosmische Reservoirs von atomarem Wasserstoff, die ferne Galaxien umgeben.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay