idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Medienpartner:
Wissenschaftsjahr


Teilen: 
09.10.2018 12:08

Mehr Reichweite für Elektrofahrzeuge: Traktionsbatterie speichert thermische Energie

Anke Zeidler-Finsel Presse- und Öffentlichkeitsarbeit
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

    In Zeiten anstehender Fahrverbote werden batterieelektrische Fahrzeuge (BEV) immer interessanter. Deren Reichweite schwangt jedoch vor allem bei niedrigen Umgebungstemperaturen. Innerhalb des EU-Projekts OPTEMUS wurden eine Vielzahl effizienzsteigernder Technologien entwickelt, um so insbesondere die Reichweitenschwankung des Elektrofahrzeugs Fiat 500e zu reduzieren. Dazu gehört eine thermisch speicherfähige Traktionsbatterie, die das Fraunhofer LBF maßgeblich mit entworfen hat. Im Mittelpunkt steht ein neuartiges Faserverbund-Sandwich-Batteriegehäuse, welches die in einem Phasenwechselmaterial-Verbundsystem (PCM-Verbund) gespeicherte Wärmeenergie zur Umgebung thermisch abschirmt.

    Das vom Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF im EU-Projekt OPTEMUS (Optimised Energy Management and Use) entwickelte Phasenwechselmaterial-Verbundsystem kann beispielsweise genutzt werden, um bei kaltem Wetter die temperatursensitiven Batteriezellen vor dem Start gezielt vorzukonditionieren und sie weiterhin mithilfe des thermisch isolierenden Gehäuses länger bei dieser optimalen Betriebstemperatur zu halten. Eine aktive Temperierung kann meist vermieden werden. Umgekehrt ist es möglich, kurzfristige, ungewollte Wärmeanstiege der Batterie abzuschwächen, die etwa bei Schnellladevorgängen entstehen können. »Die von uns entwickelten Material-, Struktur- und Prozesstechnologien sichern dem Fahrer eine zuverlässigere und gleichmäßige Reichweite seines batterie-elektrischen Fahrzeugs. Darüber hinaus profitieren Fahrzeugentwickler und Konstrukteure von einer neuen Prozesstechnologie für Funktionsintegration und Leichtbau«, erklärt Felix Weidmann, der am Fraunhofer LBF für das Forschungsprojekt verantwortlich war.

    Um den PCM-Verbund von der Umgebung thermisch zu entkoppeln und so besser steuerbar zu machen, entwickelten Wissenschaftler des Fraunhofer LBF ein Verfahren zur Herstellung eines thermisch isolierenden hochfesten Batteriegehäuses. Dieses basiert auf einem schaumspritzgegossenen integralen Polymerschaum (SABIC® PP15T1020), welcher mithilfe des hybriden Fertigungsverfahrens beanspruchungsgerecht lokal mit hochfesten thermoplastischen Faser-Kunststoff-Verbunden (TP-FKV) verstärkt wird. Hierbei stellt der Schaum die Isolationsfähigkeit sicher. Um verschiedene Polymerschäume hinsichtlich ihrer Schaummorphologien und damit der Isolationsfähigkeit untersuchen und bewerten zu können, entwarfen die Forscher eine Morphologieanalytik, die auf computertomographischen 3D-Aufnahmen basiert.

    Da der Polymerschaum nur geringe Festigkeiten sowie Steifigkeiten besitzt, wird dieser mit TP-FKV bedeckt, um die im Betrieb entstehenden Lasten auf die Batterie sicher zu tragen. Hierzu stellten die LBF-Wissenschaftler aus mehreren nur 0,25 Millimeter dünnen unidirektionalen Tapes (UDMAX™ von SABIC) ein Laminat her und verformten dieses dreidimensional, bevor im hybriden Fertigungsverfahren der Integralschaum als Kern zwischen die Laminatdecklagen gespritzt wurde.

    Leicht, sicher und großserientauglich

    Der daraus entstandene Sandwichaufbau hat mehrere Vorteile: Er besitzt ein hohes Leichtbaupotential und führt zu hohen spezifischen Biegeeigenschaften sowie Schlagfestigkeiten. Darüber hinaus bietet er einen hohen Schutz vor Intrusionsereignissen, welche insbesondere bei Batteriepacks eine große sicherheitstechnische Rolle spielt.

    Um der Automotive-Anwendung gerecht zu werden, sind beide Material- und Strukturkonzepte so entwickelt worden, dass sie auch in der Großserie anwendbar sind. So wird beispielsweise die Herstellung des thermisch isolierenden Gehäuses durch ein am Fraunhofer LBF entwickeltes hybrides Schaumspritzgussverfahren realisiert, das es erstmalig ermöglicht, kosteneffizient dreidimensionale FKV-Sandwich-Bauteile in kurzen Taktzeiten bei vergleichsweise niedrigen Materialkosten zu fertigen.

    Das OPTEMUS-Projekt wird innerhalb der »Green Vehicle Initiative« im Rahmen von »Horizont 2020« gefördert.


    Wissenschaftliche Ansprechpartner:

    Dipl.-Ing. Felix Weidmann, M.Sc,
    felix.weidmann@lbf.fraunhofer.de


    Weitere Informationen:

    http://www.lbf.fraunhofer.de/de/presse/presseinformationen/elektroauto-reichweit...


    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter
    Energie, Umwelt / Ökologie, Verkehr / Transport, Werkstoffwissenschaften
    überregional
    Forschungs- / Wissenstransfer, Forschungsprojekte
    Deutsch


    Ein neuartiger Phasenwechselmaterialverbund wird durch ein isolierendes Sandwich-Gehäuse thermisch von der Umgebung entkoppelt.


    Zum Download

    x

    Ein am Fraunhofer LBF entwickelter Prozess ermöglicht die großserientaugliche Herstellung komplexer funktionsintegrierter FKV-Sandwich-Bauteile.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay