idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
12.10.2018 14:35

Materiezustände durch Licht verändern

Birgit Kruse Referat Medien- und Öffentlichkeitsarbeit
Universität Hamburg

    Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

    Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller Zustand – die sogenannte Suprafluidität – hergestellt werden konnte. Diese Arbeit wurde in der aktuellen Ausgabe von „Physical Review Letters“ veröffentlicht und eröffnet völlig neue Möglichkeiten für die Erzeugung von Materialzuständen mit gewünschten Eigenschaften, aber auch für die lichtinduzierte Supraleitung.

    Wenn man Wasser in einen Gefrierschrank stellt, kristallisieren die Wassermoleküle und bilden Eis. Diese Änderung von einer Phase der Materie in eine andere wird als Phasenübergang bezeichnet. Manchmal möchte man diesen Vorgang kontrolliert beeinflussen, um zum Beispiel erfrischendes Slushy-Eis herzustellen – ein Gemisch aus einer festen und einer flüssigen Phase.

    Bei Quantenmaterie sind Phasenübergänge komplizierter. Quantenmaterie sind Stoffe, in denen das quantenmechanische Verhalten der Bestandteile, zum Beispiel der Wellencharakter der Elektronenbewegung, überwiegt. Auch die Aggregatszustände sind besonders: Unter bestimmten Einflüssen bildet sich ein sogenanntes Suprafluid, bei dem jede innere Reibung verloren geht und dafür eine hohe Wärmeleitfähigkeit vorhanden ist.

    Bisher war die Entstehung von Suprafluid nicht extern steuerbar, doch einem Team von Physikerinnen und Physikern um Prof. Dr. Ludwig Mathey und Prof. Dr. Andreas Hemmerich von der Universität Hamburg ist es nun gelungen, die kristalline Ordnung erfolgreich zu stören. Während bei einer Slushy-Eismaschine rotierende Klingen dafür sorgen, dass die Wassermoleküle nicht kristallisieren und ein fester Eisblock entsteht, hat das Team Licht eingesetzt, um zu verhindern, dass die Kristalle im Quantensystem die für sie typische Ordnung einnehmen.

    Die Forscherinnen und Forscher brachten eine Gaswolke aus kalten Atomen zwischen zwei hochreflektierenden Spiegeln ein. Ein externer Pumplaserstrahl wurde auf die Atomwolke gerichtet, wobei das Licht in einer bestimmten Frequenz schwang, um die kristalline Ordnung in kontrollierter Weise zu stören. Physikerinnen und Physiker benutzen den Begriff „Drive“, um diese Art von periodischen Änderungen zu beschreiben.

    Ähnlich wie Wasser seine Phase von Flüssigkeit zu Eis ändern kann, zeigt dieses Licht-Materie-System einen Phasenübergang, einen Quantenübergang. Wenn die Intensität des Strahls stark genug ist, organisieren sich die ungeordneten Atome aus der Gasphase normalerweise spontan in einem kristallinen Schachbrettmuster. Diese Selbstorganisation verhindert die Entstehung eines Suprafluids, die durch die kristalline Ordnung unterdrückt wird. Die Forscherinnen und Forscher zeigten, dass man mit etwas „Drive“ – also einer gezielten Variation der Frequenz – die Balance zugunsten der Suprafluidphase kippen kann.

    „Wir beobachten in unseren Computersimulationen, dass eine periodische Modulation der Pumpintensität die dominierende selbstorganisierte Phase destabilisieren kann“, erklärt Hauptautor Jayson Cosme von der Laserphysik der Universität Hamburg. „Dadurch kann die zuvor instabile homogene Phase wieder aufsteigen und das Suprafluid entsteht. Es ist lichtinduzierte Suprafluidität.“ Ko-Autor Andreas Hemmerich ergänzt: „Man könnte erwarten, dass sich das System einfach nur erwärmt, wenn wir es schütteln. Es war faszinierend, eine deutliche Signatur des Suprafluids zu beobachten.“

    Das Prinzip, durch gezielten Einsatz von Licht eine Phase zu verstärken oder zu unterdrücken, wurde bereits in vielen Bereichen der Physik angewandt, etwa bei sogenannten Supraleitern. „Wir haben diese Art der Lichtsteuerung der Suprafluidität vorgeschlagen, um das Prinzip zu demonstrieren, das für die lichtinduzierte Supraleitung angenommen wird“, erklärt Ludwig Mathey. Mit diesem Befund wird ein neues Kapitel der Festkörperphysik eröffnet, in dem Wissenschaftlerinnen und Wissenschaftler nicht nur Gleichgewichtseigenschaften von Materie messen, sondern über Lichtsteuerung einen Zustand mit gewünschten Eigenschaften erzeugen können.

    Publikation:

    Dynamical Control of Order in a Cavity-BEC System, J. G. Cosme, C. Georges, A. Hemmerich, and L. Mathey, Phys. Rev. Lett. 121, 153001 (2018). DOI: https://doi.org/10.1103/PhysRevLett.121.153001

    Für Rückfragen:

    Prof. Dr. Ludwig Mathey
    Universität Hamburg
    Fachbereich Physik
    Telefon: +49 40 8998-6505
    E-Mail: lmathey@physnet.uni-hamburg.de


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Ludwig Mathey
    Universität Hamburg
    Fachbereich Physik
    Telefon: +49 40 8998-6505
    E-Mail: lmathey@physnet.uni-hamburg.de


    Originalpublikation:

    Dynamical Control of Order in a Cavity-BEC System, J. G. Cosme, C. Georges, A. Hemmerich, and L. Mathey, Phys. Rev. Lett. 121, 153001 (2018). DOI: https://doi.org/10.1103/PhysRevLett.121.153001


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


    Durch die Bestrahlung der Quantenmaterie mit Licht, das in seiner Frequenz variiert, wird die die kristalline Ordnung unterdrückt unterdrückt und ein Suprafluid entsteht.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay