idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
18.12.2018 17:47

Natürliche Nanofasern aus Zellulose

Dr. Boris Pawlowski Presse, Kommunikation und Marketing
Christian-Albrechts-Universität zu Kiel

    Kieler Forschungsteam entdeckt stark haftende Nanofasern in der Schleimhülle von Pflanzensamen

    Die Samenkörner von einigen Pflanzen wie Basilikum, Kresse oder Wegerich bilden eine Schleimhülle, sobald sie mit Wasser in Berührung kommen. Sie besteht vor allem aus Zellulose, dem Hauptbestandteil pflanzlicher Zellwände, und quellenden Pektinen, pflanzliche Polysaccharide, auch Vielfachzucker genannt. Um die physikalischen Eigenschaften der schleimigen Hülle näher untersuchen zu können, nutzte ein Forschungsteam vom Zoologischen Institut der Christian-Albrechts-Universität zu Kiel (CAU) eine spezielle Trocknungsmethode, die der Schleimhülle schonend das Wasser entzieht. Dabei fand das Team heraus, dass sich auf diese Weise extrem haftstarke Nanofasern aus natürlicher Zellulose herstellen lassen. Sie könnten künftig vor allem für Anwendungen in der Biomedizin interessant sein. Ihre Ergebnisse erschienen kürzlich als Titelthema in der Zeitschrift Applied Materials & Interfaces.

    Dank ihrer schleimig-rutschigen Hülle gleiten Samenkörner unverdaut durch den Verdauungstrakt von Vögeln. So werden sie unbeschädigt ausgeschieden und können sich auf diese Weise weiterverbreiten. Vermutet wird, dass der Schleim der Samenkörner unter anderem eine Schutzfunktion erfüllt. „Um mehr über die Funktion des Schleims zu erfahren, untersuchten wir zunächst den Aufbau und die physikalischen Eigenschaften der Schleimhülle“, so Zoologie-Professor Stanislav N. Gorb, Leiter der Arbeitsgruppe „Funktionelle Morphologie und Biomechanik“ an der CAU. Dabei stellten sie fest, dass ihre mechanischen Eigenschaften vor allem von winzigen Fasern abhängen, die den Schleim mit dem Samenkorn verbinden.

    Vielfältige Eigenschaften: Von rutschig zu haftend

    Die Pektinen in der Schale der Samenkörner können eine große Menge von Wasser aufnehmen und so in wenigen Minuten eine gelartige Kapsel um das Samenkorn bilden. Durch die feinen Zellulosefasern mit einem Durchmesser von bis zu 100 Nanometern ist sie fest an der Oberfläche des Samens verankert. Die Struktur ähnelt den mikroskopisch kleinen Haftelementen auf der Oberfläche von stark haftenden Geckofüßen. Die Fasern bilden so gewissermaßen das stabilisierende Rückgrat der Schleimhülle.

    Je nach Wasserkonzentration ändern sich die Eigenschaften des Schleims. „Eigentlich macht der Schleim die Samen sehr rutschig. Wenn wir den Wassergehalt reduzieren, wird er jedoch klebrig und beginnt zu haften“, fasst Stanislav Gorb ein Ergebnis aus früheren Untersuchungen in Kooperation mit Dr. Agnieszka Kreitschitz zusammen. Die Haftkraft wird zusätzlich erhöht durch Kräfte, die zwischen den einzelnen vertikal aufgestellten Nanofasern des Samenkorns und der anhaftenden Oberfläche wirken.

    Gezielt getrocknet

    Um die Schleimhülle unter dem Rasterelektronenmikroskop untersuchen zu können, nutzt das Kieler Forschungsteam eine besonders schonende Methode, die sogenannte kritische Punkttrocknung (engl. critical-point drying, CPD). Hierfür entwässerten sie die Schleimhülle von verschiedenen Samenkörnern schrittweise mit flüssigem Kohlenstoffdioxid – statt wie normalerweise mit Ethanol. Vorteil dieser Methode ist, dass sich flüssiges Kohlenstoffdioxid bei bestimmten Druck- und Temperaturbedingungen kontrolliert verdampfen lässt, ohne dass sich eine Oberflächenspannung in der Hülle bildet. So konnte das Forschungsteam dem Schleim gezielt das Wasser entziehen, ohne die Oberfläche der Hülle auszutrocknen und damit die ursprüngliche Zellstruktur zu zerstören. Durch die punktgenaue Trocknung blieben die einzelnen Zellulosefasern unbeschadet freistehend.

    Fast so haftstark wie Kohlenstoffnanoröhren

    Die getrockneten Zellulosefasern testete das Forschungsteam auf ihre Reibungs- und Adhäsionseigenschaften und verglich sie mit denen synthetisch hergestellter Kohlenstoffnanoröhren (engl. carbon nanotubes). Diese mikroskopisch kleinen Gebilde sind aufgrund ihrer herausragenden elektrischen Leitfähigkeit, Reißfestigkeit oder ihrer Reibungseigenschaften für zahlreiche industrielle Anwendungen der Zukunft interessant.

    „Unsere Tests zeigen, dass die Reibungs- und Haftkräfte der Zellulosefasern fast genauso hoch sind wie bei vertikal stehenden Kohlenstoffnanoröhrchen“, sagt Dr. Clemens Schaber, Erstautor der Studie. „Grund sind ihre ähnlichen Dimensionen.“ Durch die besondere Trocknungsmethode können die Forschenden die Haftstärke außerdem gezielt variieren. In Gorbs Arbeitsgruppe untersucht der Zoologe und Biomechaniker die Wirkung von biologischen Nanofasern und die Möglichkeit, sie mit technischen Mitteln zu imitieren. „Als natürlicher Rohstoff hätten die Zellulosefasern deutliche Vorteile gegenüber Kohlenstoffnanoröhren, deren gesundheitliche Auswirkungen noch nicht vollständig untersucht sind“, so Schaber weiter. Nanozellulose kommt vor allem in biologisch abbaubaren Kunststoffverbundmaterialien zum Einsatz, die in der Biomedizin, der Kosmetik oder der Ernährungsindustrie eingesetzt werden.

    Bildmaterial steht zum Download bereit:
    https://www.uni-kiel.de/de/pressemitteilungen/2018/431-Samen-1.jpg
    Bildunterschrift: Durch den Kontakt mit Wasser bildet das Samenkorn von Neopallasia pectinata aus der Familie der Korbblütler eine schleimige Hülle aus. Die weißen Zellulosefasern verankern sie an der Samenoberfläche.
    © Kreitschitz

    https://www.uni-kiel.de/de/pressemitteilungen/2018/431-Samen-2.jpg
    Bildunterschrift: Eine Detailaufnahme des Mikroskops zeigt Zellulosefasern an der Oberfläche eines Samenkorns von Artemisia leucodes aus der Familie der Korbblüter. Die eigentlich farblosen Fasern wurden zur besseren Sichtbarkeit lila eingefärbt.
    © Kreitschitz

    https://www.uni-kiel.de/de/pressemitteilungen/2018/431-Samen-3.jpg
    Bildunterschrift: Mit ihrer Studie schaffte es das Kieler Forschungsteam auf das Cover der internationalen Zeitschrift Applied Materials & Interfaces.
    © (2018) American Chemical Society.

    https://www.uni-kiel.de/de/pressemitteilungen/2018/431-Samen-4.jpg
    Bildunterschrift: Zoologe und Biomechaniker Clemens Schaber erforscht an der Uni Kiel biologische Nanofasern, um sie mit technischen Mitteln nachzubauen.
    © Julia Siekmann, CAU

    Kontakt:
    Julia Siekmann
    Wissenschaftskommunikation
    Forschungsschwerpunkt Kiel Nano, Surface and Interface Science (KiNSIS)
    Universität Kiel
    Telefon: 0431/880-4855
    E-Mail: jsiekmann@uv.uni-kiel.de
    Web: http://www.kinsis.uni-kiel.de

    Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de


    Wissenschaftliche Ansprechpartner:

    Professor Stanislav N. Gorb
    Zoologisches Institut der Universität Kiel

    Telefon: 0431/880-4513

    E-Mail: sgorb@zoologie.uni-kiel.de
    Web: http://www.uni-kiel.de/zoologie/gorb/topics.html


    Originalpublikation:

    Friction-Active Surfaces Based on Free-Standing Anchored Cellulose Nanofibrils. Clemens F. Schaber, Agnieszka Kreitschitz, and Stanislav N. Gorb
    ACS Applied Materials & Interfaces 2018 10 (43), 37566-37574
    DOI: 10.1021/acsami.8b05972 https://pubs.acs.org/doi/10.1021/acsami.8b05972


    Weitere Informationen:

    http://Link: https://www.uni-kiel.de/de/detailansicht/news/samen/


    Bilder

    Durch den Kontakt mit Wasser bildet das Samenkorn von Neopallasia pectinata aus der Familie der Korbblütler eine schleimige Hülle aus. Die weißen Zellulosefasern verankern sie an der Samenoberfläche.
    Durch den Kontakt mit Wasser bildet das Samenkorn von Neopallasia pectinata aus der Familie der Korb ...
    Copyright: Kreitschitz
    None

    Zoologe und Biomechaniker Clemens Schaber erforscht an der Uni Kiel biologische Nanofasern, um sie mit technischen Mitteln nachzubauen.
    Zoologe und Biomechaniker Clemens Schaber erforscht an der Uni Kiel biologische Nanofasern, um sie m ...
    Copyright: Julia Siekmann, CAU
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Durch den Kontakt mit Wasser bildet das Samenkorn von Neopallasia pectinata aus der Familie der Korbblütler eine schleimige Hülle aus. Die weißen Zellulosefasern verankern sie an der Samenoberfläche.


    Zum Download

    x

    Zoologe und Biomechaniker Clemens Schaber erforscht an der Uni Kiel biologische Nanofasern, um sie mit technischen Mitteln nachzubauen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).