idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
20.12.2018 17:14

Menschliche Blutzellen lassen sich direkt zu neuralen Stammzellen umprogrammieren

Dr. Sibylle Kohlstädt Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum

    Wichtiger Schritt für die regenerative Therapie:
    Menschliche Blutzellen lassen sich direkt zu neuralen Stammzellen umprogrammieren

    Wissenschaftlern vom Deutschen Krebsforschungszentrum (DKFZ) und vom Stammzellinstitut HI-STEM* in Heidelberg ist es erstmals gelungen, auf direktem Wege menschliche Blutzellen zu einem bisher unbekannten Typ von neuralen Stammzellen umzuprogrammieren. Diese induzierten Stammzellen gleichen jenen, die während der frühen Embryonalentwicklung des zentralen Nervensystems vorkommen. Sie lassen sich in der Kulturschale unbegrenzt vermehren und modifizieren und können eine wichtige Grundlage für die Entwicklung regenerativer Therapien darstellen.

    Stammzellen gelten als die Tausendsassas im Gewebe: Sie können sich unbegrenzt vermehren und dann – sofern es sich um pluripotente embryonale Stammzellen handelt – zu allen erdenklichen Zelltypen heranreifen. 2006 hatte der Japaner Shinya Yamanaka erkannt, dass sich solche Zellen auch im Labor herstellen lassen – aus bereits ausgereiften Körperzellen. Allein vier genetische Faktoren genügen, um das Rad der Entwicklung zurückzudrehen und so genannte induzierte pluripotente Stammzellen (iPS) herzustellen, die identische Eigenschaften haben wie embryonale Stammzellen. Für diese Entdeckung erhielt Yamanaka 2012 den Nobelpreis für Medizin.

    „Das war ein bedeutender Durchbruch für die Stammzellforschung“, sagt Andreas Trumpp, Deutsches Krebsforschungszentrum (DKFZ) und Direktor des Stammzellinstituts HI-STEM in Heidelberg. „Insbesondere für die Forschung in Deutschland, wo das Herstellen von menschlichen embryonalen Stammzellen nicht erlaubt ist.“ Stammzellen haben ein enormes Potenzial sowohl für die Grundlagenforschung als auch für die Entwicklung regenerativer Therapien, die darauf abzielen, bei Patienten zerstörtes oder krankes Gewebe wieder herzustellen. Allerdings ist die Reprogrammierung auch mit Problemen verbunden: So können pluripotente Zellen Keimbahntumore, so genannte Teratome, ausbilden.

    Eine andere Möglichkeit ist, das Rad der Entwicklung nicht komplett zurückzudrehen. Trumpps Team ist es nun erstmalig gelungen, ausgereifte menschliche Zellen derart zu reprogrammieren, dass ein definierter Typ von induzierten neuralen Stammzellen entsteht, der sich auch nahezu unbegrenzt vermehren lässt. „Für die Reprogrammierung haben wir, ähnlich wie Yamanaka, vier genetische Faktoren eingesetzt, allerdings andere“, erklärt Marc Christian Thier, Erstautor der Studie. „Es handelt sich dabei um Faktoren, bei denen wir davon ausgehen konnten, dass sie eine Reprogrammierung zu einem frühen Entwicklungsstadium des Nervensystems erlauben.“

    Auch in der Vergangenheit hatten andere Arbeitsgruppen Bindegewebszellen zu reifen Nervenzellen oder zu neuralen Vorläuferzellen reprogrammiert. Doch diese künstlich hergestellten Nervenzellen ließen sich oftmals nicht vermehren und waren daher für einen therapeutischen Einsatz kaum nutzbar. „Oder es handelte sich um eine heterogene Mischung aus verschiedenen Zelltypen, die es unter physiologischen Bedingungen im Körper möglicherweise gar nicht gibt“, benennt Andreas Trumpp die Probleme.

    Den Wissenschaftlern um Trumpp ist es gemeinsam mit dem Stammzellforscher Frank Edenhofer von der Universität Innsbruck und der Neurowissenschaftlerin Hannah Monyer, DKFZ und Universitätsklinikum Heidelberg, gelungen, verschiedene menschliche Zellen zu reprogrammieren: Bindegewebszellen der Haut oder der Bauchspeicheldrüse sowie periphere Blutzellen. „Die Herkunft der Zellen hatte dabei keinen Einfluss auf die Eigenschaften der gewonnenen Stammzellen“, so Thier. Insbesondere die Möglichkeit, neurale Stammzellen ohne invasiven Eingriff aus dem Blut von Patienten zu gewinnen, bedeutet einen entscheidenden Vorteil für künftige Therapieansätze.

    Das Besondere an den reprogrammierten Zellen der Heidelberger: Es handelt sich um einen homogenen Zelltyp, der einem Stadium neuraler Stammzellen ähnelt, der während der Embryonalentwicklung des Nervensystems vorkommt. „Entsprechende Zellen existieren in der Maus und vermutlich auch im Menschen während der frühen embryonalen Gehirnentwicklung“, sagt Thier. „Wir haben mit unserer Arbeit gleichzeitig einen neuen neuralen Stammzelltyp im Säugerembryo beschrieben.“

    Dabei handelt es sich um induzierte Stammzellen der Neuralplatte (induced Neural Plate Border Stem Cells, iNBSCs), der ersten Struktur des Nervensystems, die in der Embryonalentwicklung auftritt und breites Entwicklungspotenzial hat. Die iNBSC der Heidelberger Wissenschaftler sind multipotent und können sich in zwei verschieden Richtungen weiterentwickeln. Sie können einerseits den Weg der Entwicklung zu reifen Nervenzellen und deren Versorgerzellen, den Gliazellen, einschlagen, also zu Zellen des zentralen Nervensystems werden. Andererseits können sie sich zu Zellen der Neuralleiste entwickeln, aus denen wiederum verschiedene Zelltypen hervorgehen, etwa periphere sensible Nervenzellen oder Knorpel und Knochen des Schädels.

    Damit bilden die iNBSC eine ideale Grundlage, um für einen individuellen Patienten eine große Bandbreite an verschiedenen Zelltypen zu generieren. „Diese Zellen haben das identische Erbgut wie der Spender und werden daher vom Immunsystem vermutlich als „Selbst“ erkannt und nicht abgestoßen“, erklärt Thier.

    Mit der Genschere CRISP/Cas9 können die iNBSC modifiziert oder genetische Defekte repariert werden, wie die Wissenschaftler im Experiment belegen. „Sie sind daher sowohl für die Grundlagenforschung und die Suche nach neuen Wirkstoffen interessant, als auch für die Entwicklung regenerativer Therapien, etwa bei Patienten mit Erkrankungen des Nervensystems. Bis dahin wird allerdings noch eine Menge Forschungsarbeit notwendig sein“, betont Trumpp.

    *Das Heidelberger Institut für Stammzellforschung und experimentelle Medizin (HI-STEM) gGmbH ist eine Partnerschaft des DKFZ und der Dietmar Hopp Stiftung

    Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1.000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, interessierte Bürger und Fachkreise über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

    Ansprechpartner für die Presse:

    Dr. Sibylle Kohlstädt
    Pressesprecherin
    Kommunikation und Marketing
    Deutsches Krebsforschungszentrum
    Im Neuenheimer Feld 280
    69120 Heidelberg
    T: +49 6221 42 2843
    F: +49 6221 42 2968
    E-Mail: S.Kohlstaedt@dkfz.de
    E-Mail: presse@dkfz.de
    www.dkfz.de


    Originalpublikation:

    Marc Christian Thier, Oliver Hommerding, Jasper Panten, Roberta Pinna, Diego García-González, Thomas Berger, Philipp Wörsdörfer, Yassen Assenov, Roberta Scognamiglio, Adriana Przybylla, Paul Kaschutnig, Lisa Becker, Michael D. Milsom, Anna Jauch, Jochen Utikal, Carl Herrmann, Hannah Monyer, Frank Edenhofer und Andreas Trumpp. Cell Stem Cell (2018), DOI: 10.1016/j.stem.2018.11.015


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay