idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
15.01.2019 16:20

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Dr. Boris Pawlowski Presse, Kommunikation und Marketing
Christian-Albrechts-Universität zu Kiel

    Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt. Kommt ein Plasma in Kontakt mit einem Festkörper, wie etwa der Wand der Laboranlagen, kann sich dieser unter bestimmten Bedingungen grundlegend und dauerhaft verändern. Ein Team des Instituts für Theoretische Physik und Astrophysik der Christian-Albrechts-Universität zu Kiel (CAU) hat nun einen überraschenden neuen Effekt entdeckt, bei dem sich die elektronischen Eigenschaften des Festkörpermaterials, wie etwa die elektrische Leitfähigkeit, kontrolliert, extrem schnell und umkehrbar ändern lassen. Ihre Ergebnisse erschienen in der Fachzeitschrift „Physical Review Letters“.

    Plasmen – heiße Gase aus sich chaotisch bewegenden Elektronen, Ionen, Atomen und Molekülen – finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt. Kommt ein Plasma in Kontakt mit einem Festkörper, wie etwa der Wand der Laboranlagen, kann sich diese unter bestimmten Bedingungen grundlegend und dauerhaft verändern. So können sich Atome und Moleküle aus dem Plasma auf dem Festkörpermaterial ablagern oder energiereiche Plasma-Ionen können Atome aus dem Festkörper herausschlagen und seine Oberfläche auf diese Weise deformieren oder sogar zerstören. Ein Team des Instituts für Theoretische Physik und Astrophysik der Christian-Albrechts-Universität zu Kiel (CAU) hat nun einen überraschenden neuen Effekt entdeckt, bei dem sich die elektronischen Eigenschaften des Festkörpermaterials, wie etwa die elektrische Leitfähigkeit, kontrolliert, extrem schnell und umkehrbar ändern lassen. Ihre Ergebnisse erschienen kürzlich in der renommierten Fachzeitschrift Physical Review Letters.

    Seit mehr als fünfzig Jahren erforschen Wissenschaftlerinnen und Wissenschaftler aus der Physik und der Materialwissenschaft die Prozesse an der Grenzfläche zwischen Plasmen und Festkörpern. Die Prozesse im Festkörper wurden dabei bislang allerdings stark vereinfacht beschrieben. Genaue Vorhersagen sind so nicht möglich und Erkenntnisse zu technischen Anwendungen basieren häufig auf dem „Trial-and-Error-Prinzip“.

    Auch Kieler Wissenschaftlerinnen und Wissenschaftler erforschen seit vielen Jahren Plasma-Festkörper-Grenzflächen und entwickeln hierfür neue Messverfahren, Modellierungen und Anwendungen. In ihrer kürzlich veröffentlichten Studie untersuchte das Forschungsteam um Professor Michael Bonitz zeitaufgelöst, also gewissermaßen „live“, wie Festkörper reagieren, wenn sie mit energetischen Plasma-Ionen beschossen werden. Um diese ultraschnellen Prozesse von nur wenigen Femtosekunden – eine Femtosekunde entspricht einer Billiardstel Sekunde – zu beschreiben, verwendete das Team zum ersten Mal präzise quantenmechanische Simulationsmethoden. „Dabei zeigte sich, dass die Ionen die gitterartig angeordneten Elektronen des Festkörpers stark anregen können. So besetzen zwei Elektronen einen Gitterplatz doppelt und bilden damit ein Elektronenpaar, ein sogenanntes Doublon“, erklärt Bonitz. Dieser Effekt tritt bei bestimmten Nanostrukturen auf, zum Beispiel in sogenannten Graphen-Nanobändern. Hierbei handelt es sich um Streifen aus einer einzelnen Lage von Kohlenstoffatomen, die durch ihre einzigartigen Merkmale wie Leichtigkeit, Flexibilität und Leitfähigkeit für zukünftige Anwendungen in der Mikroelektronik interessant sein könnten. Durch die kontrollierte Erzeugung solcher Doublonen könnten sich Eigenschaften von Nanobänder gezielt ändern lassen.

    „Außerdem konnten wir vorhersagen, dass dieser Effekt auch in ultrakalten Gasen in optischen Gittern beobachtet werden kann“, so Bonitz. Damit sind die Ergebnisse der Kieler Wissenschaftler auch über die Grenzen ihres Faches hinaus von Bedeutung. Jetzt suchen die Physiker nach optimalen Bedingungen, mit denen der Effekt auch in Plasmen, die im Labor erzeugt wurden, realisiert werden kann.

    Kontakt:
    Professor Michael Bonitz
    Institut für Theoretische Physik und Astrophysik
    Universität Kiel
    Tel.: 0431-880-4122
    E-Mail: bonitz@theo-physik.uni-kiel.de
    Web: http://www.theo-physik.uni-kiel.de/~bonitz

    Bildmaterial steht zum Download bereit:
    http://www.uni-kiel.de/de/pressemitteilungen/2019/014-Plasmaeffekt.jpg
    Bildunterschrift: Am Hochleistungscomputer im Keller des Kieler Physikzentrums konnten Niclas Schlünzen, Karsten Balzer, Jan-Philip Joost und Professor Michael Bonitz (von links) erstmals die ultraschnell ablaufenden Prozesse beschreiben, wenn energetische Plasma-Ionen auf Festkörper treffen. Außerdem leistete Mitautor Maximilian Rodriguez Rasmussen (nicht im Bild) mit seiner Bachelorarbeit einen wichtigen Beitrag zur Studie.
    © Siekmann, CAU

    Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf http://www.kinsis.uni-kiel.de

    Christian-Albrechts-Universität zu Kiel
    Presse, Kommunikation und Marketing, Dr. Boris Pawlowski
    Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
    E-Mail: presse@uv.uni-kiel.de Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni Instagram: instagram.com/kieluni


    Wissenschaftliche Ansprechpartner:

    Professor Michael Bonitz
    Institut für Theoretische Physik und Astrophysik
    Universität Kiel
    Tel.: 0431-880-4122
    E-Mail: bonitz@theo-physik.uni-kiel.de
    Web: www.theo-physik.uni-kiel.de/~bonitz


    Originalpublikation:

    „Doublon Formation by Ions Impacting a Strongly Correlated Finite Lattice System“, Karsten Balzer, Maximilian Rodriguez Rasmussen, Niclas Schlünzen, Jan-Philip Joost, and Michael Bonitz, Phys. Rev. Lett. 121, 267602 – Published 28 December 2018
    Link: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.267602


    Weitere Informationen:

    https://www.uni-kiel.de/de/detailansicht/news/plasmaeffekt/


    Bilder

    Am Hochleistungscomputer des Kieler Physikzentrums konnten Niclas Schlünzen, Karsten Balzer, Jan-Philip Joost und Professor Michael Bonitz (v.l.) erstmals ultraschnell ablaufende Prozesse beschreiben.
    Am Hochleistungscomputer des Kieler Physikzentrums konnten Niclas Schlünzen, Karsten Balzer, Jan-Phi ...
    Foto/Copyright: Julia Siekmann, Uni Kiel
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Am Hochleistungscomputer des Kieler Physikzentrums konnten Niclas Schlünzen, Karsten Balzer, Jan-Philip Joost und Professor Michael Bonitz (v.l.) erstmals ultraschnell ablaufende Prozesse beschreiben.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).