idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
14.03.2019 16:12

Elektrokatalyse: Wasserspalter mit Multi Tasking-Talent - Edelmetall-freier Katalysator entwickelt

Andrea Weber-Tuckermann Presse- und Öffentlichkeitsarbeit
Universität Ulm

    Die elektrokatalytische Wasserspaltung gilt als Schlüsseltechnologie für die Entwicklung von Brennstoffzellen. Ulmer Chemiker haben nun einen Edelmetall-freien Komposit-Katalysator entwickelt, der bei der Spaltung von Wasser sowohl für die Entwicklung von Sauerstoff als auch von Wasserstoff eingesetzt werden kann. Veröffentlicht wurden die Ergebnisse des Projekts in der renommierten Fachzeitschrift „Angewandte Chemie“.

    Brennstoffzellen eignen sich hervorragend zur Speicherung von Wind- und Sonnenenergie. Sie sind daher ein bedeutender Baustein der Energiewende. Der dafür benötigte Wasserstoff wird durch die elektrokatalytische Spaltung von Wasser gewonnen, bei der auch Sauerstoff frei wird. Einen großen Schritt zur Optimierung dieser elektrochemischen Schlüsselreaktion ist nun Forschenden der Universität Ulm gelungen. Die Chemiker aus dem Institut für Anorganische Chemie I haben einen Edelmetall-freien Komposit-Katalysator entwickelt, der in derselben chemischen Reaktion sowohl für die Entwicklung von Sauerstoff als auch von Wasserstoff eingesetzt werden kann. Veröffentlicht wurden die Ergebnisse des Projekts in der renommierten Fachzeitschrift „Angewandte Chemie“.

    „Die elektrochemische Reaktion bei der Wasserspaltung läuft in zwei chemischen Halbreaktionen ab. Einerseits wird dabei Wasserstoff ausgegast und andererseits Sauerstoff“, erklärt Professor Carsten Streb vom Institut für Anorganische Chemie I an der Universität Ulm. In herkömmlichen elektrochemischen Katalysatorsystemen kommen bei diesen beiden Halbreaktionen unterschiedliche Materialien zum Einsatz. Ulmer Chemiker aus Professor Strebs Labor haben nun in Kooperation mit Materialwissenschaftlern aus China ein Edelmetall-freies Komposit-Material entwickelt, das sich in beiden Teilreaktionen gleichermaßen bewährt hat. Der Vorteil: „Das bi-funktionale Katalysator-Material vereinfacht das Design und die Fertigung von Systemen für die elektrochemische Wasserspaltung. Außerdem können so wechselseitige Verunreinigungen und Materialunverträglichkeiten vermieden werden, die bis zur „Vergiftung“ des Katalysators reichen“, erklärt Dandan Gao. Die Ulmer Doktorandin ist Erstautorin der Studie.

    Um elektrochemische Wasserspaltungssysteme im industriellen Maßstab realisieren zu können, braucht es Katalysatoren, die ohne Edelmetalle wie Platin oder Iridium auskommen. Trotzdem müssen diese eine hohe Reaktivität aufweisen sowie sehr stabil und langlebig sein. Die Ulmer Chemiker haben nun ein modulares Design für ein solches Edelmetall-freies bi-funktionales Verbundmaterial entwickelt, das diese Voraussetzungen erfüllt. „Wir verwenden dafür sowohl hochreaktives Kobalt-Oxid als auch halbleitendes Kupfer-Oxid, das den Elektronentransport verstärken soll. Dritter im Verbund ist Wolfram-Oxid, das das Katalysator-Material strukturell und chemisch stabilisieren soll, um es langlebiger zu machen“, erklärt Gao. Mit Hilfe einer hydrothermalen Reaktion wird dieses Metall-Oxid-Gemisch auf einer Elektrode aus herkömmlichem makroporösem Kupferschaum abgeschieden. Der Kupferschaum ist elektrisch sehr leitfähig und hat eine große Reaktionsoberfläche. Zugleich sind dessen Mikrostrukturen gut zugänglich für den Elektrolyten und erleichtern damit die Freisetzung der Gase an der Elektrodenoberfläche.
    „Die größte Herausforderung bestand darin, die Metall-Oxide mit ihren unterschiedlichen Funktionalitäten auf der Oberfläche der Kupferschaum-Elektrode zu verankern. Und zwar so, dass das synthetisierte Material sowohl chemisch, als auch mechanisch und elektrisch stabil bleibt“, so Projektleiter Streb. Mit dem Ergebnis sind die Wissenschaftler sehr zufrieden.

    So wurde mit volumetrischen Messungen die katalytische Leistungsfähigkeit untersucht: Mit elektronenmikroskopischen und röntgenspektroskopischen Analysen konnten nicht nur die Materialstrukturen im Nano- und Mikrometerbereich sichtbar gemacht werden, sondern auch die chemische Beschaffenheit, die kristalline Struktur und die räumliche Verteilung der unterschiedlichen Metall-Oxid-Nanostrukturen nachgewiesen werden. In den rasterelektronenmikroskopischen Aufnahmen kann man beispielsweise die Nadelstruktur der sehr leitfähigen Nanodrähte aus Kupferoxid hervorragend erkennen. Beteiligt an dem Projekt waren auch Elektronenmikroskopie-Experten um die Ulmer Professorin Ute Kaiser. Gefördert wurde das Projekt mit Mitteln der Deutschen Forschungsgemeinschaft aus dem Sonderforschungsbereich TRR 234 „CataLight“. Weitere Unterstützer sind die Alexander-von-Humboldt-Stiftung, die Helmholtz-Gemeinschaft und das Chinese Scholarship Council.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Carsten Streb, Institut für Anorganische Chemie I, Tel.: 0731 / 50 23867, E-Mail: carsten.streb@uni-ulm.de


    Originalpublikation:

    Modular design of noble metal-free mixed metal oxide electrocatalysts for complete water splitting. Dandan Gao, Rongji Liu, Johannes Biskupek, Ute Kaiser, Yu-Fei Song, Carsten Streb. In: Angewandte Chemie, first published 07 February 2019,
    https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201900428


    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Energie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Deutsch


    Doktorandin Dandan Gao experimentiert mit einem speziellen Katalysatormaterial aus einem edelmetallfreien Metalloxid-Gemisch;


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay