Wissenschaftlern aus dem Deutschen Krebsforschungszentrum ist es gelungen, Biomoleküle in ihrer Spiegelbild-Form zu produzieren. Ziel der Forscher ist es, ein spiegelbildliches künstliches Proteinsynthese-System zu nachzubauen. Damit sollen unter Anderem spiegelbildliche therapeutische Proteine, etwa Antikörper, produziert werden, die im Körper vor biologischem Abbau geschützt wären und keine Reaktion des Immunsystems hervorrufen.
Von fast allen biologischen Molekülen existieren zwei verschiedene räumliche Strukturen, die sich zueinander wie Bild und Spiegelbild verhalten. Diese Moleküle bezeichnet man als Enantiomere. Wie eine rechte und eine linke Hand lassen sie sich nicht zur Deckung bringen. Abhängig davon, ob polarisiertes Licht beim Durchleuchten der Moleküle nach rechts oder nach links gedreht wird, spricht man von der D-Form oder L-Form des Enantiomers. In der Natur finden sich fast ausschließlich Proteine aus L-Aminosäuren, während DNA und RNA aus Molekülen in D-Form aufgebaut sind.
Wissenschaftler des Deutschen Krebsforschungszentrums arbeiten daran, Biomoleküle in ihrer Spiegelbild-Form zu synthetisieren. Künftig wollen sie allerdings nicht nur einzelne Moleküle nachbauen: „Unser langfristiges Ziel ist es, einfache, künstliche biologische Systeme in spiegelbildlicher Form zu kreieren, die denen in der Natur entsprechen, aber nicht mit der Umwelt interagieren“, sagt Jörg Hoheisel, der das Projekt leitet.
In einer aktuellen Arbeit ist es Wissenschaftlern um Hoheisel gelungen, aus D-Aminosäuren die Spiegelbildversion einer DNA-Ligase herzustellen. Ligasen fügen DNA-Stücke zusammen. Die Spiegelbild-Ligase kann aus ebenfalls spiegelbildlichen DNA-Stücken ein vollständiges Spiegelbild-Gen zusammenzusetzen. Weitere Enzyme in D-Form, die die DNA vervielfältigen und in RNA übersetzen, stehen ebenfalls schon zur Verfügung. „An dieser Stelle ist im Moment Schluss“, berichtet Hoheisel. „Als nächstes benötigen wir eine spiegelbildliche Struktur, die die Funktion der Ribosomen in der Zelle übernimmt.“
Ribosomen sind makromolekulare Komplexe, die in der Zelle dafür verantwortlich sind, RNA-Stränge in Aminosäureketten zu übersetzen und auf diese Weise Proteine herzustellen. „Mit den Spiegelbild-Ribosomen hätten wir ein einfaches System zusammengestellt, mit dem wir alle Arten von Proteinen relativ einfach im Reagenzglas herstellen könnten“, so Hoheisel. „Das künstliche System wäre unabhängig von der Natur, aber identisch in den biophysikalischen und chemischen Eigenschaften und könnte langfristig sogar zu einer archetypischen, spiegelbildlichen Kopie einer Zelle führen.“
Während dies aber noch Zukunftsmusik ist, könnte der zugrunde liegende Ansatz bereits in näherer Zukunft für therapeutische Zwecke genutzt werden, etwa für die Synthese von spiegelbildlichen Antikörpern. Therapeutische Antikörper werden heute synthetisch hergestellt und bei einer Reihe von Krankheiten als Medikament eingesetzt, nicht zuletzt in der Krebstherapie. Allerdings kann das Immunsystem des Patienten gegen die therapeutischen Antikörper reagieren. „Für den Körper sind sie letztlich körperfremde Eindringlinge, die es zu bekämpfen gilt, ebenso wie es mit Krankheitserregern geschieht“, erklärt Hoheisel. „Ein Antikörper-Medikament, das aus spiegelbildlichen D-Aminosäuren anstelle der natürlichen L-Aminosäuren besteht, würde voraussichtlich keine Immunantwort hervorrufen, da D-Moleküle vom Immunsystem nicht erkannt werden.“ Außerdem könnten die spiegelbildlichen Antikörper auch länger ihre therapeutische Wirkung entfalten, da sie im Körper nur langsam biologisch abgebaut würden. Sie könnten sogar unkompliziert als Tablette eingenommen werden. Die Verdauungsenzyme im Körper würden ihnen nichts anhaben. In einer internationalen Kooperation, gefördert durch das Bundesforschungsministerium, verfolgt Hoheisel diese Ziele.
Quelle: Joachim Weidmann, Martina Schnölzer, Philip E. Dawson und Jörg D. Hoheisel. Copying life: synthesis of an enzymatically active mirror-image DNA-ligase made of D-amino acids. Cell Chemical Biology 2019, DOI: 10.1016/j.chembiol.2019.02.008
Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1.000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, interessierte Bürger und Fachkreise über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.
Joachim Weidmann, Martina Schnölzer, Philip E. Dawson und Jörg D. Hoheisel. Copying life: synthesis of an enzymatically active mirror-image DNA-ligase made of D-amino acids. Cell Chemical Biology 2019, DOI: 10.1016/j.chembiol.2019.02.008
Merkmale dieser Pressemitteilung:
Journalisten
Biologie
überregional
Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).