idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
27.03.2019 12:24

Bloß kleine Wellen schlagen: Forscherteam erzeugt ultrakurze Spinwellen in einem einfachen Material

Simon Schmitt Kommunikation und Medien
Helmholtz-Zentrum Dresden-Rossendorf

    Die Spintronik gilt als vielversprechendes Konzept für die Elektronik der Zukunft. Sie könnte schnellere Computer und sparsamere Smartphones möglich machen. Einem Forscherteam unter Beteiligung des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) und des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) ist es nun gelungen, sogenannte Spinwellen deutlich einfacher und effektiver zu erzeugen als bislang bekannt. Die Forscher stellen ihre Resultate in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters (DOI: 10.1103/PhysRevLett.122.117202) vor.

    Heutige Computerchips basieren darauf, dass elektrische Ladungen transportiert werden: Bei jedem Schaltprozess fließt in einem elektronischen Bauteil ein Strom von Elektronen, die dabei einen Widerstand verspüren und unerwünschte Abwärme erzeugen. Und je kleiner die Strukturen auf einem Chip sind, umso schwieriger wird es, diese Wärme abzuführen. Die ladungsbasierte Architektur ist auch zum Teil der Grund, warum die Taktraten der Prozessoren seit Jahren nicht mehr signifikant steigen. Die Zeiten, in denen die Chips mit schöner Regelmäßigkeit schneller und leistungsfähiger werden, neigen sich dem Ende zu. „Die bestehenden Konzepte stoßen allmählich an ihre Grenzen“, erklärt Dr. Sebastian Wintz vom Institut für Ionenstrahlphysik und Materialforschung am HZDR. „Deshalb arbeiten wir an einer neuen Strategie, den Spinwellen.“

    Bei diesem Ansatz werden keine Ladungen mehr transportiert, sondern lediglich der Spin, der „Eigendrall“ von Elektronen in einem magnetischen Material. Die Elektronen bleiben dabei an ihren Plätzen, lediglich die Ausrichtung der Spins verändert sich. Da sich die Spins benachbarter Elektronen gegenseitig spüren, kann sich eine Änderung auf die Nachbarn übertragen. Das Resultat ist ein magnetisches Signal, das als Welle durchs Material läuft – eine Spinwelle. Der Vorteil: Bauteile, die mit Spinwellen arbeiten, würden kaum Abwärme erzeugen und könnten deshalb deutlich weniger Energie verbrauchen – interessant unter anderem für mobile Endgeräte wie Smartphones. Auch eine weitere Miniaturisierung der Bauteile ist für bestimmte Anwendungen denkbar, weil Spinwellen erheblich kürzere Wellenlängen besitzen als vergleichbare elektromagnetische Signale zum Beispiel im Mobilfunk. Dann würden noch mehr Schaltkreise auf einen Chip passen als heute.

    Per Magnetwirbel zur Spinwelle
    Zuvor ist allerdings noch einiges an Grundlagenforschung nötig. Wie zum Beispiel lassen sich Spinwellen möglichst effizient erzeugen? Seit längerem versuchen das die Fachleute, indem sie mikrometerkleine Metallstreifen auf dünne Magnetschichten aufbringen. Fließt ein Wechselstrom durch diesen Streifen, erzeugt er ein Magnetfeld, das auf engsten Raum begrenzt ist. Dieses Feld ruft dann in der Magnetschicht eine Spinwelle hervor. Die Methode hat jedoch einen Nachteil: Die Wellenlänge der erzeugten Spinwellen kann nur schwer kleiner werden als die Breite des Metallstreifens – ungünstig für die Entwicklung von hochintegrierten Bauteilen mit nanometerfeinen Strukturen.

    Doch es gibt eine Alternative: Hat das magnetische Material die Form einer Kreisscheibe, entstehen Magnetwirbel, deren zentraler Kern nur etwa zehn Nanometer misst. Dieser Wirbelkern lässt sich durch ein Magnetfeld in Schwingung versetzen, wodurch in der Schicht eine Spinwelle entsteht. „Vor einiger Zeit konnten wir das mit relativ komplexen, aus mehreren Lagen bestehenden Materialien realisieren“, berichtet Wintz. „Jetzt ist es uns gelungen, Spinwellen über Wirbelkerne in einem sehr einfachen Material auszusenden.“ Hierbei wird eine etwa 100 Nanometer feine Schicht aus einer Nickel-Eisen-Legierung genutzt – ein Material, das einfach herzustellen ist.

    Unerwartet kurze Längen
    Bemerkenswert war dabei die Wellenlänge der erzeugten Spinwellen – sie betrug gerade mal 80 Nanometer. „Für die Fachwelt war neu und überraschend, dass das mit einem solch simplen Material möglich ist“, erzählt Dr. Georg Dieterle, der das Phänomen in seiner Doktorarbeit am MPI-IS untersucht hat. „Auch wir hatten nicht damit gerechnet, dass man damit bei Frequenzen im unteren Gigahertzbereich so kurze Wellen erzeugen kann.“ Den Grund für diese Kurzwelligkeit sehen die Fachleute in der Form der Ausbreitung. So hat die Spinwelle etwa in der Mitte der Nickel-Eisen-Schicht eine Art „Knoten“, in dem sich die magnetische Richtung lediglich auf und ab bewegt und nicht wie sonst üblich im Kreis schwingt.

    Sichtbar machen konnte das Team die Phänomene mit einem speziellen Röntgenmikroskop am Elektronenspeicherring BESSY II des Helmholtz-Zentrums Berlin. „Nirgendwo sonst auf der Welt stehen die nötigen Orts- und Zeitauflösungen in dieser Kombination zu Verfügung“, betont Prof. Gisela Schütz, Direktorin am MPI-IS. „Ohne dieses Mikroskop hätte man diese Effekte nie beobachtet.“ Nun hoffen die Fachleute, dass das Ergebnis bei der weiteren Entwicklung der Spintronik hilft. „Unsere Wirbelkerne könnten zum Beispiel als lokale, gut kontrollierbare Quelle dienen, um die grundlegenden Phänomene zu erforschen und neue Konzepte mit Spinwellen-basierten Bauelementen zu entwickeln“, gibt Dieterle einen Ausblick. „Die von uns beobachteten Spinwellen könnten zukünftig für hochintegrierte Schaltungen interessant sein.“

    Publikation:
    G. Dieterle, J. Förster, H. Stoll, A.S. Semisalova, S. Finizio, A. Gangwar, M. Weigand, M. Noske, M. Fähnle, I. Bykova, J. Gräfe, D.A. Bozhko, H.Yu. Musiienko-Shmarova, V. Tiberkevich, A.N. Slavin, C.H. Back, J. Raabe, G. Schütz, S. Wintz: Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths, in Physical Review Letters, 2019 (DOI: 10.1103/PhysRevLett.122.117202)

    Weitere Informationen:
    Dr. Sebastian Wintz
    Institut für Ionenstrahlphysik und Materialforschung am HZDR / Paul Scherrer Institut, Schweiz
    Tel.: +49 351 260-3221 | E-Mail: s.wintz@hzdr.de

    Prof. Gisela Schütz
    Direktorin am Max-Planck-Institut für Intelligente Systeme
    Tel.: +49 711 689-1950 | Email: schuetz@is.mpg.de

    Medienkontakt:
    Simon Schmitt | Wissenschaftsredakteur
    Tel.: +49 351 260-3400 | Mobil: +49 175 874 2865 | E-Mail: s.schmitt@hzdr.de
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
    Bautzner Landstr. 400, 01328 Dresden | www.hzdr.de

    Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
    • Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
    • Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
    • Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
    Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
    Es ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.


    Wissenschaftliche Ansprechpartner:

    Dr. Sebastian Wintz
    Institut für Ionenstrahlphysik und Materialforschung am HZDR / Paul Scherrer Institut, Schweiz
    Tel.: +49 351 260-3221 | E-Mail: s.wintz@hzdr.de

    Prof. Gisela Schütz
    Direktorin am Max-Planck-Institut für Intelligente Systeme
    Tel.: +49 711 689-1950 | Email: schuetz@is.mpg.de


    Originalpublikation:

    G. Dieterle, J. Förster, H. Stoll, A.S. Semisalova, S. Finizio, A. Gangwar, M. Weigand, M. Noske, M. Fähnle, I. Bykova, J. Gräfe, D.A. Bozhko, H.Yu. Musiienko-Shmarova, V. Tiberkevich, A.N. Slavin, C.H. Back, J. Raabe, G. Schütz, S. Wintz: Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths, in Physical Review Letters, 2019 (DOI: 10.1103/PhysRevLett.122.117202)


    Weitere Informationen:

    https://www.hzdr.de/presse/erzeugung_spinwellen


    Merkmale dieser Pressemitteilung:
    Journalisten
    Elektrotechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Deutsch


    Eine ultrakurzwellige Spinwelle (rot) läuft durch eine Nickel-Eisen-Schicht. Etwa in der Mitte der Schicht schwingt die magnetische Richtung (blaue Pfeile) in einer Art Knoten lediglich auf und ab.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay