idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
03.04.2019 19:00

Newly discovered mechanism of plant hormone auxin acts the opposite way

Dr. Elisabeth Guggenberger Communications and Events
Institute of Science and Technology Austria

    Auxin accumulation at the inner bend of seedling leads to growth inhibition rather than stimulation as in other plant tissues.

    Increased levels of the hormone auxin usually promote cell growth in various plant tissues. Chinese scientists together with researchers from the Institute of Science and Technology Austria (IST Austria) have now shown that in special areas of the seedling, increased auxin levels trigger a different gene expression pathway leading to growth inhibition. The discovery, published in the journal Nature, helps to explain the formation of the typical bend or so called apical hook that helps the seedling to break through the soil following germination.

    Varied auxin concentrations mediate distinct developmental outcomes in different plant tissues. For instance, auxin accumulating in stem tissues triggers a gene expression pathway that ultimately leads to increased cell elongation resulting in stem growth. A growth scenario, which cannot be explained in an analogous way, however, is the development of the apical hook that the early plant forms to protect its delicate growing apex when breaking through the soil. In the cells of the inner bend of the hook, i.e. the concave side, auxin accumulates; however, to grow into the form of a hook, the seedling’s shoot must grow less at the inner concave than on the outer convex side. Scientists thus faced a paradox situation and asked themselves: Can auxin do something opposite from what it has been known to do in other parts of the plants?

    One hormone—two different gene expressions

    To solve the puzzle, the research group around Tongda Xu from the Chinese Academy of Sciences collaborated with IST Austria plant cell biologist Jiří Friml and his postdoc fellow Zuzana Gelová. By testing various mutants of the model plant Arabidopsis thaliana, the scientists could reveal a previously unknown gene expression pathway triggered by auxin accumulation and leading to the inhibition of growth at the concave side of the hook. While the previously known pathway is located at the nucleus and involves the receptor protein TIR1 (Transport Inhibitor Response 1), this newly discovered pathway starts at the cell surface—and involves a different perception component, Transmembrane Kinase (TMK1), the function of which had been unclear.

    A paradox and TMK1 explained

    In the newly discovered mechanism, auxin activates TMK1 at the cell surface and triggers cleavage of the intracellular part of this protein. Within the cell, the cleaved part of TMK1 interacts with specific transcriptional repressors. While auxin degrades similar repressor proteins in the nucleus-based TIR1 pathway to trigger gene expression leading to cell growth, it stabilizes the repressors connected to the TMK1 pathway, resulting in growth inhibition rather than stimulation. Thus, TIR1 and TMK1 interact with different subsets of transcriptional proteins and therefore facilitate auxin signaling by two different mechanisms, allowing the shoot to grow on one side, but not the other. Co-author Jiří Friml: “We have wanted to understand for a long time how TMK1 works as well as whether and how auxin accumulation can function in two different ways. Thanks to our persistence and the major contributions of our Chinese colleagues, we now know both.” Starting from here, it would also be worthwhile to the scientists to understand the full repertoire of the developmental process beyond the apical hook controlled by this novel auxin signaling pathway.

    IST Austria

    The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas. www.ist.ac.at


    Wissenschaftliche Ansprechpartner:

    Prof. Jiří Friml
    +43 2243 9000 5401
    jiri.friml@ist.ac.at


    Originalpublikation:

    Min Cao et al: “TMK1-mediated auxin signaling regulates differential growth of the apical hook”, Nature, DOI: http://dx.doi.org/10.1038/s41586-019-1069-7


    Weitere Informationen:

    https://ist.ac.at/research/research-groups/friml-group/ Website of the research group


    Bilder

    Increased auxin accumulation (blue areas) in the concave side of the apical hook of Arabidopsis thaliana
    Increased auxin accumulation (blue areas) in the concave side of the apical hook of Arabidopsis thal ...
    IST Austria – Marçal Gallemí Rovira/Eva Benková group
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Biologie
    überregional
    Forschungsergebnisse
    Englisch


     

    Increased auxin accumulation (blue areas) in the concave side of the apical hook of Arabidopsis thaliana


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).