idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
24.04.2019 15:05

Frustrated materials under high pressure

Dr. Christine Bohnet Kommunikation und Medien
Helmholtz-Zentrum Dresden-Rossendorf

    People are not the only ones to be occasionally frustrated. Some crystals also show frustrations. Cesium copper chloride (Cs2CuCl4) – or CCC for short – is a prime example of frustrated materials. In this crystal, the magnetic copper atoms reside on a triangular lattice and seek to align themselves antiparallel to each other. In a triangle, this does not work, however. To better understand the underlying basics, physicists from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), supported by international colleagues, can now control the magnetic coupling using an elegant measuring method.

    “Our aim is to elucidate the complex quantum processes in geometrically frustrated crystals in detail,” explains Dr. Sergei Zvyagin from the Dresden High Magnetic Field Laboratory at the HZDR. Theories about the magnetic behavior of crystals such as CCC abound. But so far, sophisticated experiments to test these theories on the object itself have been lacking. To this end, it is helpful to deliberately change the strength of the interactions between the magnetic atoms.

    Physicists in many laboratories often take a tedious route: they produce crystals with geometric frustration in a slightly different chemical composition. This changes the magnetic interaction between the elementary magnets, but sometimes also – unintentionally – the crystal structure. Zvyagin left this laborious, purely chemical path to deeper knowledge. Instead, he used high pressures. Under these conditions, the strength of the coupling of the magnetic spins can be changed quasi-continuously.

    “With the new method, we can control the coupling parameters within the crystal and simultaneously measure the effects on the magnetic properties,” says Sergei Zvyagin. He received the CCC crystals for his experiments from Dr. Hidekazu Tanaka’s group at the Tokyo Institute of Technology. With an edge length of just a few millimeters and their shimmering orange translucency, they are more reminiscent of bright garnet gemstones than of artificial crystals grown in the laboratory. Also in Japan, at Tohoku University in Sendai, Zvyagin and his colleagues placed the crystals in a high-pressure press with pistons made of high-strength zirconium oxide. The researchers gradually increased the pressure to around two gigapascals – a pressure similar to the one exerted by the weight of a car on a surface the size of a colored pencil lead.

    “Under this pressure, the distances between the atoms changed very little,” says Zvyagin. “But the magnetic properties of the crystal showed a drastic change.” The researchers were able to measure these changes directly using electron spin resonance (ESR). They determined the transmittance for light (or more precisely: microwaves) in a very strong external magnetic field of up to 25 Tesla – about half a million times stronger than the Earth’s magnetic field. In addition, the crystal had to be deep-frozen to -271 degrees Celsius, almost to absolute zero, in order to avoid disturbing effects caused by heat.

    These measurements in a strong external magnetic field revealed the very unusual magnetic properties of the material. The researchers were able to vary the strength of the coupling between neighboring magnetic spins by changing the pressure. Further measurements using an additional method from materials research – the tunnel diode oscillator (TDO) technique – complemented these results. The TDO measurements were carried out – also under high pressures and in strong magnetic fields – at the Florida State University in Tallahassee.

    In addition, Zvyagin and his colleagues found evidence that CCC under high pressure exhibits a cascade of new phases with increasing magnetic field, absent at zero pressure. “Thanks to these measurements, we are now a step further towards better understanding the variety of these phases,” says Professor Joachim Wosnitza, head of the Dresden High Magnetic Field Laboratory.

    “The exact identification of these phases is one of our next targets,” says Zvyagin. In the future, he intends to determine the exact structures of his CCC crystals by means of neutron scattering. For these plans, he appreciates the excellent research conditions offered by the HZDR with its close international network. “For me, it is an ideal place for my interest in fundamental research,” says the physicist. “And if we understand the quantum processes in these crystals with frustrated geometry, applications could also emerge.”

    Joachim Wosnitza also sees great potential in the exotic magnetic properties of these crystals. “One could imagine long-lived quantum systems in which the magnetic spins can be used in a controlled manner,” says Wosnitza. “Whether this will then lead to a quantum computer or a special sensor cannot yet be anticipated, however.” The road to such applications could still be very long. But with their successful measurements, the HZDR researchers have no reason to be frustrated – unlike their crystal samples.


    Wissenschaftliche Ansprechpartner:

    Dr. Sergei Zvyagin
    Hochfeld-Magnetlabor Dresden am HZDR
    Telefon +49 351 260 3517
    E-Mail: s.zvyagin@hzdr.de

    Prof. Joachim Wosnitza
    Direktor, Hochfeld-Magnetlabor Dresden am HZDR
    Telefon: +49 351 260 3524
    E-Mail: j.wosnitza@hzdr.de


    Originalpublikation:

    S. A. Zvyagin u.a.: „Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4“, in Nature Communications 10 (2019), DOI: 10.1038/s41467-019-09071-7


    Weitere Informationen:

    https://doi.org/10.1038/s41467-019-09071-7
    https://www.hzdr.de/presse/frust


    Bilder

    Frustrated magnetism: In the crystal cesium copper chloride (Cs2CuCl4), CCC for short, the magnetic copper atoms sit on a triangular lattice.
    Frustrated magnetism: In the crystal cesium copper chloride (Cs2CuCl4), CCC for short, the magnetic ...
    Detlev Mueller / HZDR
    None

    Dr. Sergei Zvyagin in his lab at the Dresden High Magnetic Field Laboratory of the HZDR.
    Dr. Sergei Zvyagin in his lab at the Dresden High Magnetic Field Laboratory of the HZDR.
    Detlev Mueller / HZDR
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Englisch


     

    Frustrated magnetism: In the crystal cesium copper chloride (Cs2CuCl4), CCC for short, the magnetic copper atoms sit on a triangular lattice.


    Zum Download

    x

    Dr. Sergei Zvyagin in his lab at the Dresden High Magnetic Field Laboratory of the HZDR.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).