idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
22.05.2019 19:00

Galaxien als „kosmische Kochtöpfe“

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Die Entstehung von Sternen innerhalb interstellarer Wolken aus Gas und Staub, sogenannten Molekülwolken, verläuft sehr schnell, aber auch sehr „ineffizient“. Das meiste Gas wird durch die Strahlung der Sterne zerstreut. Galaxien ähneln damit „kosmischen Kochtöpfen“ – es sind hochdynamische Systeme, deren Bestandteile ständig ihr Erscheinungsbild ändern. Zu diesem Schluss kommt ein Forscherteam unter Leitung des Astrophysikers Dr. Diederik Kruijssen von der Universität Heidelberg anhand von Beobachtungen der Spiralgalaxie NGC 300.

    Galaxien als „kosmische Kochtöpfe“
    Junge Sterne heizen Molekülwolken auf und treiben heiße interstellare Gasblasen durch Galaxien

    Die Entstehung von Sternen innerhalb interstellarer Wolken aus Gas und Staub, sogenannten Molekülwolken, verläuft sehr schnell, aber auch sehr „ineffizient“. Das meiste Gas wird durch die Strahlung der Sterne zerstreut. Galaxien ähneln damit „kosmischen Kochtöpfen“ – es sind hochdynamische Systeme, deren Bestandteile ständig ihr Erscheinungsbild ändern. Anhand von Beobachtungen der Spiralgalaxie NGC 300 ist es einem Forscherteam unter Leitung des Astrophysikers Dr. Diederik Kruijssen von der Universität Heidelberg erstmals gelungen, die Entwicklung von Molekülwolken und die in ihnen stattfindende Sternentstehung im Zeitverlauf zu rekonstruieren. Ihre Analyse zeigt, dass diese Wolken kurzlebige Phänomene sind, die unter dem Einfluss der intensiven Strahlung junger Sterne einen schnellen Lebenszyklus durchlaufen. Die Forschungsergebnisse wurden in „Nature“ veröffentlicht.

    Es gibt zwei Ansätze, um die in der Spiralgalaxie NGC 300 beobachtete Aktivität der Sternentstehung zu erklären. Entweder verwandelt sich die gesamte Materie der Molekülwolke über einen langen Zeitraum hinweg in Sterne. In diesem Fall müssten die jungen Sterne am gleichen Ort wie die Molekülwolken, aus denen sie sich einst gebildet haben, zu finden sein. Oder aber die Sterne entstehen sehr schnell innerhalb der Molekülwolken aus einem Bruchteil des Gases und zerstreuen das restliche Gas durch ihre intensive Strahlung. Ist dies der Fall, müssten sich die jungen Sterne und die Molekülwolken an unterschiedlichen Orten befinden.

    Um die Frage zu klären, welcher Ansatz zutreffend ist, kombinierten Dr. Kruijssen und sein Team zwei verschiedene Beobachtungen der Galaxie NGC 300, die rund sechs Millionen Lichtjahre von der Milchstraße entfernt ist. Die erste Beobachtung ist eine Karte des vom Kohlenmonoxid emittierten Lichts, die anzeigt, wo sich Molekülwolken befinden; die zweite ist eine Karte von heißem, ionisiertem Wasserstoff, der die Positionen massereicher neugebildeter Sterne markiert. Die Karten entstanden mithilfe des Atacama Large Millimeter Array (ALMA) der Europäischen Südsternwarte (ESO) und des 2,2-Meter-Teleskops der Max-Planck-Gesellschaft und der ESO. Die ALMA-Beobachtungen stammen von Dr. Andreas Schruba, Wissenschaftler am Max-Planck-Institut für extraterrestrische Physik in Garching und einer der Co-Autoren der Studie. Die Wissenschaftler analysierten die Daten mit einer neuen statistischen Methode, die ermittelt, wie molekulares Gas und Sternentstehung auf unterschiedlichen Größenskalen zusammenhängen. Mit dieser Methode ist es erstmals möglich, die Positionen von Molekülwolken und jungen Sternen in Relation zueinander mit großer Genauigkeit zu quantifizieren.

    Die Auswertung der Daten lässt nach Angaben der Wissenschaftler keinen Zweifel, dass die Positionen von Molekülwolken und jungen, massereichen Sternen selten übereinstimmen. Je kleiner die betrachteten Größenskalen waren, desto stärker war dieser Effekt. Daraus schließen die Wissenschaftler, dass Sterne sehr schnell entstehen, sodass Gas und Sterne aufeinanderfolgende Phasen im Lebenszyklus von Molekülwolken darstellen. „Unsere Ergebnisse zeigen, dass die Entstehung von Sternen sehr schnell und zugleich sehr ineffizient verläuft“, so Dr. Kruijssen, der eine Forschungsgruppe am Astronomischen Rechen-Institut leitet. „Molekülwolken in NGC 300 haben eine Lebensspanne von etwa zehn Millionen Jahren und werden innerhalb von nur rund 1,5 Millionen Jahren zerstört, lange bevor die massereichsten Sterne ihr Lebensende erreicht haben und als Supernovae explodieren.“ Dr. Mélanie Chevance, Wissenschaftlerin in seinem Team und ebenfalls Co-Autorin der Publikation ergänzt: „Aufgeheizt durch die intensive Strahlung junger Sterne wird die Molekülwolke, aus der die Sterne einst entstanden sind, in Form von heißen interstellaren Gasblasen auseinandergetrieben. So werden nur etwa zwei bis drei Prozent der Masse in Molekülwolken tatsächlich in Sterne umgewandelt.“

    Die Wissenschaftler wollen die neue statistische Methode nun auf die Daten von weit entfernten Galaxien anwenden, um die Sternentstehung in Molekülwolken im Verlauf der Geschichte des Universums zu beobachten. „Wir werden nun den Zusammenhang von Molekülwolken und jungen Sternen in Galaxien im ganzen Kosmos untersuchen. In naher Zukunft wird uns das ermöglichen, Galaxien als Ensemble kleiner Bestandteile zu verstehen, die durch Sternentstehung gesteuerten Lebenszyklen unterliegen und so gemeinsam das Erscheinungsbild ihrer Wirtsgalaxien prägen“, erläutert Dr. Kruijssen.

    Die Forschungsarbeiten wurden in Zusammenarbeit mit Wissenschaftlern aus Großbritannien, den USA und den Niederlanden durchgeführt. Gefördert wurden sie von der Deutschen Forschungsgemeinschaft (DFG) und dem European Research Council (ERC).

    Erläuterung zum Video:
    Das Video demonstriert, dass Molekülwolken (oben rechts) und junge Sterne (oben links) in der nahen Galaxie NGC 300 nicht korrelieren. Im Verlauf des Videos nimmt die räumliche Auflösung zu, und das Verhältnis von Molekülwolken und jungen Sternen (unten links) ändert sich von weiß (starke Korrelation) auf großen Skalen zu rot und blau (starke Anti-Korrelation) auf kleinen Skalen. Die Grafik unten rechts quantifiziert dieses Verhalten. Quelle: Diederik Kruijssen & Nature

    Kontakt:
    Dr. Guido Thimm
    Zentrum für Astronomie der Universität Heidelberg (ZAH)
    Telefon (06221) 54-1805
    thimm@ari.uni-heidelberg.de

    Universität Heidelberg
    Kommunikation und Marketing
    Pressestelle, Telefon (06221) 54-2311


    Wissenschaftliche Ansprechpartner:

    Dr. Diederik Kruijssen
    Zentrum für Astronomie der Universität Heidelberg (ZAH)
    Telefon (06221) 54-1877
    kruijssen@uni-heidelberg.de


    Originalpublikation:

    J.M.D. Kruijssen, A. Schruba, M. Chevance, S.N. Longmore, A.P.S. Hygate, D.T. Haydon, A.F. McLeod, J.J. Dalcanton, L.J. Tacconi & E.F. van Dishoeck: Fast and inefficient star formation due to short-lived molecular clouds and rapid feedback. Nature, doi: 10.1038/s41586-019-1194-3


    Weitere Informationen:

    http://wwwstaff.ari.uni-heidelberg.de/kruijssen/News/News.html
    http://wwwstaff.ari.uni-heidelberg.de/MUSTANG/Home.html
    https://youtu.be/ZbNCXDLrFRo


    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay