idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Teilen: 
01.07.2019 19:31

Die Vermessung von Licht, Zeit und Vakuum

Julia Wandt Stabsstelle Kommunikation und Marketing
Universität Konstanz

    Konstanzer Physiker analysieren Quantenzustände von Licht und Vakuumfluktuationen und zeigen deren Wechselbeziehung zur Zeit auf

    Es sind die großen Fragen nach dem Seinszustand unseres Universums, in denen sich die Physik und Philosophie berühren: Welche Beschaffenheit hat das Vakuum, das absolute Nichts? Welche Prozesse spielen sich im Licht ab, im Bruchteil einer einzigen Lichtschwingung? Wie hängen Lichtausbreitung und der Ablauf der Zeit zusammen? Physikern der Universität Konstanz um Prof. Dr. Guido Burkard und Prof. Dr. Alfred Leitenstorfer gelang ein wesentlicher Beitrag bei der Beantwortung dieser Fragen. Sie entwickelten erfolgreich ein physikalisches Modell, um die Quantenzustände des elektromagnetischen Feldes von Licht sowie von Vakuum auf ultrakurzen Zeitskalen zu beschreiben. Darüber hinaus zeigen sie auf, wie das elektromagnetische Feld im Vakuum – sogenannte Vakuumfluktuationen – beeinflusst werden kann. Ihre Arbeit weist erstmalig nach, dass Quantenzustände des elektromagnetischen Feldes von Licht und Vakuum in Relation zur Zeit stehen. Dies schafft eine weitere Analogie zwischen der Quantenmechanik und der Relativitätstheorie, deren Verbindung eine der großen Herausforderungen der modernen theoretischen Physik darstellt. Die Forschungsarbeiten, die im Rahmen des Sonderforschungsbereiches 767 „Controlled Nanosystems“ der Universität Konstanz stattfanden, wurden am 1. Juli 2019 im Wissenschaftsjournal Nature Physics veröffentlicht.

    Selbst im absoluten Nichts des Vakuums, in dem weder Materie noch Licht vorhanden sind, existieren noch immer Schwankungen des elektromagnetischen Feldes. Dieses elektromagnetische „Grundrauschen“ des Universums wird als Vakuumfluktuationen bezeichnet. 2015 gelang es dem Konstanzer Physiker Prof. Dr. Alfred Leitenstorfer und seinem Team, diese Vakuumfluktuationen direkt experimentell zu messen. Seine grundlegenden Erkenntnisse zu den elektromagnetischen Eigenschaften des absoluten Nichts wurden nun in dem Theoriemodell von Guido Burkard und seinen Mitarbeitern weiter ausgearbeitet. Guido Burkard und sein Doktorand Matthias Kizmann, Erstautor der Studie, berechneten die Quantenzustände, die sich im elektromagnetischen Feld von Licht und Vakuum abspielen. „Was wir immer mehr verstehen, ist, dass sogar das Vakuum – der Raum, in dem sich nichts befindet – unglaublich viel Struktur hat“, schildert Guido Burkard.

    „Gequetschtes Licht“
    Als Grundlage ihrer Analyse arbeiteten Burkard und Kizmann mit sogenanntem „gequetschten Licht“ („squeezed light“). Hierbei handelt es sich um Lichtimpulse, deren elektromagnetischen Fluktuationen in sich verlagert – „gequetscht“ – wurden. So kann beispielsweise das elektrische Rauschen des Feldes verringert werden, wodurch aber im Gegenzug sein magnetisches Rauschen verstärkt wird, und umgekehrt. Die Arbeiten von Kizmann und Burkard zeigen eine direkte Abhängigkeit zwischen dem elektromagnetischen Feld von Licht bzw. Vakuum und der Zeit. Dies weist unter anderem nach, dass Veränderungen in der Art und Weise, wie Zeit für das Licht vergeht, Auswirkungen auf die Beschaffenheit des elektromagnetischen Vakuums hat. Dieses Ergebnis schafft auf Ebene der Quantenmechanik eine Analogie zur Relativitätstheorie, die anhand der Lichtgeschwindigkeit eine Wechselbeziehung zwischen Raum und Zeit definiert.

    Ein rechnerischer Trick
    Ein sehr nützliches „Nebenprodukt“ der aktuellen Forschungsergebnisse ist die Schlüsselerkenntnis, wie die sehr komplexen Berechnungen des elektromagnetischen Feldes auf ultrakurzen Zeitskalen künftig einfacher gelöst werden könnten. Der direkte Zusammenhang zwischen dem elektromagnetischen Feld und der Zeit ermöglicht es, den Zustand des elektromagnetischen Feldes indirekt über zeitliche Faktoren zu erfassen. „Normalerweise muss man das gesamte elektromagnetische Feld berechnen. Wir konnten zeigen, dass es reicht zu berechnen, wie die Zeit sich verändert – dadurch wissen wir zugleich, wie das elektromagnetische Feld sich verändert“, schildert Matthias Kizmann. Die beschriebenen gequetschten Zustände könnten unter anderem zukünftig zur verbesserten Detektion von Gravitationswellen genutzt werden.

    Faktenübersicht:
    - Analyse der Quantenzustände von Licht und Vakuumfluktuationen im Femtosekundenbereich.

    - Forschungsergebnisse zeigen eine Relation zwischen dem elektromagnetischen Feld von Licht bzw. Vakuum und der Zeit auf.

    - Originalpublikation: Matthias Kizmann, Thiago Lucena de M. Guedes, Denis V. Seletskiy, Andrey S. Moskalenko, Alfred Leitenstorfer and Guido Burkard: Subcycle squeezing of light from a time flow perspective, Nature Physics, published 1 July 2019
    DOI: 10.1038/s41567-019-0560-2
    Link: https://www.nature.com/articles/s41567-019-0560-2

    - Forschung im Rahmen des Sonderforschungsbereiches 767 „Controlled Nanosystems“ der Universität Konstanz

    - Gefördert von der Deutschen Forschungsgemeinschaft (DFG) und im Rahmen des Landesgraduiertenförderungsgesetzes (LGFG) Baden-Württemberg.

    Hinweis an die Redaktionen:
    Ein Bild kann im Folgenden heruntergeladen werden:
    https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2019/ExIni/Vermessung_Licht_...

    Bildunterschrift:
    Schematische Skizze des Erzeugungsprozesses der „gequetschten“ Zustände. Ein ultrakurzes Pumpfeld wird in einen nichtlinearen Kristall gesandt, wodurch das Vakuum „gequetscht“ wird. Innerhalb des Kristalls werden verschiedene Bereiche des Feldes umverteilt (siehe graue Linien in der horizontalen Ebene). Des Weiteren wird das Feld E0 (Amplitude der Vakuumfluktuationen) verstärkt oder abgeschwächt (z-Achse).


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Guido Burkard, Universität Konstanz
    Prof. Dr. Alfred Leitenstorfer, Universität Konstanz
    Matthias Kizmann, Universität Konstanz


    Originalpublikation:

    Matthias Kizmann, Thiago Lucena de M. Guedes, Denis V. Seletskiy, Andrey S. Moskalenko, Alfred Leitenstorfer and Guido Burkard: Subcycle squeezing of light from a time flow perspective, Nature Physics, published 1 July 2019
    DOI: 10.1038/s41567-019-0560-2
    Link: https://www.nature.com/articles/s41567-019-0560-2


    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


    Schematische Skizze des Erzeugungsprozesses der „gequetschten“ Zustände.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).

    Cookies optimieren die Bereitstellung unserer Dienste. Durch das Weitersurfen auf idw-online.de erklären Sie sich mit der Verwendung von Cookies einverstanden. Datenschutzerklärung
    Okay