Kieler Forschungsteam entschlüsselt Haftmechanismen beim Pollenflug
Für Allergikerinnen und Allergiker bedeutet der Pollenflug oft eine schwere Zeit. Für Pflanzen ist er hingegen eine der wichtigsten Möglichkeiten, sich zu vermehren: Neben dem Wind tragen vor allem Insekten die Pollen von einer Blüte zur anderen, um sie zu bestäuben. Hierbei müssen sich die Pollen immer wieder auf unterschiedlichen Oberflächen anhaften und sich ablösen. Die dafür nötigen Haftmechanismen waren bisher wenig erforscht. Wie Wissenschaftler des Zoologischen Instituts der Christian-Albrechts-Universität zu Kiel (CAU) jetzt herausgefunden haben, sind diese Mechanismen weitaus komplexer als bisher angenommen. Sie unterscheiden sich je nach Mikrostruktur der Pflanzenoberflächen und der Dauer ihres Kontakts mit den Pollen. In der Studie, die in der aktuellen Ausgabe des Journal of the Royal Society Interface erschienen ist, hat das Forschungsteam erstmals die dabei wirkenden Haftkräfte gemessen. Die Ergebnisse könnten wichtige Erkenntnisse liefern für den Transport medizinischer Wirkstoffe oder, angesichts eines steigenden Insektensterbens, für die Entwicklung alternativer Strategien in der Landwirtschaft.
Pollen: Ein Allroundtalent der Haftung
Juckende Nase, gerötete Augen, ständiges Niesen – Materialwissenschaftler Shuto Ito litt selbst unter einer starken Pollenallergie. Er wollte mehr über den Prozess des Pollenflugs erfahren und verließ seine Heimatstadt in Japan, um gemeinsam mit Professor Stanislav Gorb die Hafteigenschaften von Pollen zu erforschen. In seiner Arbeitsgruppe „Funktionelle Morphologie und Biomechanik“ an der CAU untersucht Gorb die besonderen Fähigkeiten von Pflanzen und Tieren und wie sich diese künstlich nachbilden lassen.
„Pollen, die von Insekten transportiert werden, bewältigen drei verschiedene Haftuntergründe: Wenn sie sich von ihrer Startblume lösen, auf dem Insekt anhaften und von dort schließlich auf der Zielblume abgesetzt werden. Wir wollen herausfinden, welche Haftmechanismen das ermöglichen“, erklärt Gorb. Doktorand Ito untersucht diese Mechanismen anhand von Modellpflanzen der Art Hypochaeris radicata. Diese krautartigen Pflanzen aus der Familie der Korbblütler blühen bis in den Spätherbst auf der gesamten Nordhalbkugel. Die Pollen auf ihren gelben Blüten sind wie die vieler anderer Pflanzen mit einer öligen Substanz umgeben, dem sogenannten Pollenkitt. „Bislang war die Forschung davon ausgegangen, dass Pollenkitt eine zentrale Funktion für das Anhaften der Pollen hat. Doch wir haben festgestellt, dass er sich unter bestimmten Bedingungen genau gegensätzlich verhält, also nicht haftet.“, fasst Ito seine bisherigen Erkenntnisse zusammen. „Wir müssen die Haftmechanismen von Pollen viel differenzierter betrachten.“ Demnach werde die Haftung von Pollen von einem komplexen Wechselspiel aus dem Alter der Pollen, der Luftfeuchtigkeit und den jeweiligen Haftuntergründen beeinflusst.
Start- und Zielpunkt des Pollenflugs untersucht
In ihrer aktuellen Studie konzentrierten sich die Wissenschaftler auf die Haftmechanismen der beiden Pflanzenteile, die für den Pollentransport am wichtigsten sind: Auf dem Griffel, einem männlichen Teil des Blütenstempels, auch Stylus genannt, haften die Pollen, bevor sie von einem Insekt abgelöst werden. Darüber befindet sich bei den untersuchten Korbblütern die Narbe. Das weibliche Organ, auch als Stigma bezeichnet, nimmt die ankommenden Pollen von anderen Blüten auf.
Mit einem Rasterkraftmikroskop haben die Wissenschaftler gemessen, wie stark die Pollen auf dem Griffel und der Narbe der Hypochaeris radicata jeweils haften. Sie fanden heraus, dass beide Pflanzenteile sehr unterschiedliche Hafteigenschaften besitzen, die sich im Verlauf des Bestäubungsprozesses ändern. So erhöht sich die Haftwirkung auf der Narbe drastisch um den Faktor 11,9, während sie auf dem Griffel mit dem Faktor 2,7 nahezu unverändert bleibt.
Optimale Anpassung im Laufe der Evolution
„Wir nehmen an, dass die beiden Pflanzenteile im Laufe der Evolution unterschiedliche Funktionen herausgebildet haben, um den Prozess der Bestäubung zu optimieren“, erklärt Ito. Die Narbe erhöhe ihre Haftung, um die neuen Pollen aufzunehmen und festzuhalten. Würde sich die Haftung allerdings auch auf dem Griffel als Startpunkt des Pollentransports intensivieren, könnten sich die Pollen dort nicht mehr ablösen. „Mit diesem Haftsystem tragen die Pollen vermutlich entscheidend dazu bei, die Reproduktion von Pflanzen zu sichern“, so Ito weiter.
Verantwortlich für die verschiedenen Hafteigenschaften der beiden Pflanzenteile, so vermuten die Wissenschaftler, ist ihre unterschiedliche Oberflächenstruktur auf Mikroebene und eine spezielle Flüssigkeit, die von der Narbe abgesondert wird. Hierfür untersuchten sie mit einem speziellen Kryorasterelektronenmikroskop schockgefrorene Proben der Pflanzen. In diesem Zustand bleibt ihre ursprüngliche Struktur erhalten und es lassen sich auch flüssige oder ölige Substanzen betrachten.
Mögliche Erkenntnisse für Beschichtungsprozesse und den Transport medizinischer Wirkstoffe
„Wenn wir herausfinden, mit welchen Mechanismen wir solche Interaktionen von Mikropartikeln und Oberflächen steuern könnten, ließen sich daraus möglicherweise Schlüsse ziehen für Beschichtungs- und Druckprozesse, den Transport von medizinischen Wirkstoffen oder die Behandlung von Atemwegserkrankungen“, vermutet Bionik-Forscher Gorb. In Form spezieller Filter könnten sie vielleicht auch eines Tages Pollenallergikern und -allergikerinnen Abhilfe schaffen.
Bildmaterial steht zum Download bereit:
http://www.uni-kiel.de/de/pressemitteilungen/2019/247-pollen-1.jpg
Bildunterschrift: Zur Bestäubung tragen Insekten Pollen von Blüte zu Blüte. Was dabei mit den Pollen genau passiert, haben Wissenschaftler der Universität Kiel untersucht.
© Pixabay
http://www.uni-kiel.de/de/pressemitteilungen/2019/247-pollen-2.jpg
Bildunterschrift: Professor Stanislav Gorb (rechts) und Doktorand Shuto Ito haben anhand des Korbblüters Hypochoeris radicata untersucht, wie Pollen auf Blüten haften.
© Julia Siekmann, Uni Kiel
http://www.uni-kiel.de/de/pressemitteilungen/2019/247-pollen-3.jpg
Bildunterschrift: Zur Bestäubung haften Pollen auf der sogenannten Narbe in der Blüte der Hypochoeris radicata, wie die kolorierte Aufnahme aus dem Rasterelektronenkryomikroskop zeigt.
© Shuto Ito
Kontakt:
Julia Siekmann
Wissenschaftskommunikation
Forschungsschwerpunkt Kiel Nano, Surface and Interface Science (KiNSIS)
Universität Kiel
Telefon: 0431/880-4855
E-Mail: jsiekmann@uv.uni-kiel.de
Web: http://www.kinsis.uni-kiel.de
Über den Forschungsschwerpunkt KiNSIS:
Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt »Nanowissenschaften und Oberflächenforschung« (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Physik, Chemie, Ingenieurwissenschaften und Life Sciences zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de
Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni Instagram: www.instagram.com/kieluni
Professor Stanislav N. Gorb
Arbeitsgruppe „Funktionelle Morphologie und Biomechanik“
Zoologisches Institut der Universität Kiel
Telefon: 0431/880-4513
E-Mail: sgorb@zoologie.uni-kiel.de
Web: http://www.uni-kiel.de/zoologie/gorb/topics.html
Shuto Ito
Telefon: +49-157-36280789
E-Mail: sito@zoologie.uni-kiel.de
Ito S, Gorb SN. 2019, Attachment-based mechanisms underlying capture and release of pollen grains. J. R. Soc. Interface 20190269. http://dx.doi.org/10.1098/rsif.2019.0269
Ito S, Gorb SN. 2019, Fresh “Pollen Adhesive” weakens humidity-dependent pollen adhesion. ACS Applied Materials & Interfaces 11 (27), 24691-24698
DOI 10.1021/acsami.9b04817 https://pubs.acs.org/doi/10.1021/acsami.9b04817
https://www.uni-kiel.de/de/detailansicht/news/247-pollen/
Professor Stanislav Gorb (rechts) und Doktorand Shuto Ito haben anhand des Korbblüters Hypochoeris r ...
© Julia Siekmann, Uni Kiel
None
Zur Bestäubung haften Pollen auf der sogenannten Narbe in der Blüte der Hypochoeris radicata, wie di ...
© Shuto Ito
None
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler, jedermann
Biologie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).