idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
23.09.2019 17:00

Wie molekulare Fußbälle im Röntgenlaser zerplatzen

Dr. Thomas Zoufal Presse- und Öffentlichkeitsarbeit
Deutsches Elektronen-Synchrotron DESY

    Ein internationales Forschungsteam hat in Echtzeit verfolgt, wie Fußballmoleküle aus Kohlenstoff im Strahl eines Röntgenlasers zerplatzen. Die Untersuchung zeigt den zeitlichen Verlauf des Zerberstens, das weniger als eine billionstel Sekunde dauert, und hat Bedeutung für die Analyse empfindlicher Proteine und anderer Biomoleküle, die ebenfalls häufig mit Hilfe heller Röntgenlaserblitze durchleuchtet werden. Die Fußballmoleküle lösen sich langsamer und anders auf als erwartet, wie das Team um Nora Berrah von der Universität von Connecticut und Robin Santra von DESY im Fachblatt „Nature Physics“ berichtet. Diese Beobachtung trägt zur verbesserten Analyse von Proteinen mit Röntgenblitzen bei.

    Die Forscherinnen und Forscher hatten mit sogenannten Buckminster-Fullerenen experimentiert, kurz Buckyballs genannt. Diese kugelförmigen Moleküle bestehen aus 60 Kohlenstoffatomen, die in abwechselnden Fünf- und Sechsecken angeordnet sind wie die wabenförmigen Lederstücke eines Fußballs. „Buckyballs eignen sich gut als einfaches Modellsystem für Biomoleküle“, erläutert Santra, der Leitender Wissenschaftler bei DESY am Center for Free-Electron Laser Science (CFEL) und Physikprofessor an der Universität Hamburg ist. „Da sie nur aus einer Atomsorte bestehen und symmetrisch aufgebaut sind, lassen sie sich in Theorie und Experiment gut darstellen. Dies ist ein erster Schritt vor der Untersuchung von komplexeren Molekülen aus unterschiedlichen Atomsorten.“

    Mit dem Röntgenlaser LCLS (Linac Coherent Light Source) am US-Forschungszentrum SLAC in Kalifornien beschossen die Wissenschaftlerinnen und Wissenschaftler einzelne Fußballmoleküle mit jeweils nur etwa 20 Femtosekunden (billiardstel Sekunden) kurzen Blitzen und beobachteten deren Wirkung in Echtzeit mit einer zeitlichen Auflösung im Bereich von etwa zehn Femtosekunden. Die Daten zeigen, dass der Röntgenblitz aus etwa jedem fünften der 60 Kohlenstoffatome ein Elektron herausschlug. „Danach passiert zunächst einmal nichts. Erst nach einigen Dutzend Femtosekunden lösen sich nach und nach Kohlenstoffatome von dem Molekül“, berichtet Santra.

    „Was dann folgt, ist keine Explosion“, erläutert der Physiker. „Stattdessen lösen sich die Buckyballs vergleichsweise langsam auf. Dabei dampfen nach und nach Kohlenstoffatome ab – und zwar viel mehr neutrale als elektrisch geladene, das war überraschend.“ Da die Fragmentation der Buckyballs auf dieser Zeitskala nicht explosionsartig erfolgt, sprechen die Forscher vom Abdampfen der Atome. Erst mit Hilfe der theoretischen Modellierung des Prozesses ließen sich die experimentellen Daten sinnvoll deuten.

    „Typischerweise fliegen etwa 25 neutrale und nur 15 elektrisch geladene Kohlenstoffatome aus dem Molekül“, erläutert Santra. „Der Rest bildet Fragmente aus mehreren Atomen.“ Der ganze Prozess dauert rund 600 Femtosekunden. Das ist nach menschlichen Maßstäben immer noch unvorstellbar kurz, für die Strukturanalyse mit Röntgenlasern jedoch extrem lang. „In den typischerweise 20 Femtosekunden eines Röntgenlaserblitzes bewegen sich die Atome maximal 0,1 Nanometer – das ist im Bereich einzelner Atomdurchmesser und kleiner als die Messgenauigkeit der Strukturanalyse.“ Ein Nanometer ist ein millionstel Millimeter.

    Für die Strukturanalyse von Proteinen züchten Forscher in der Regel kleine Kristalle aus den Biomolekülen. Der helle Röntgenlaserblitz wird dann am Kristallgitter gestreut und erzeugt ein typisches Beugungsmuster, aus dem sich die Kristallstruktur und damit auch die räumliche Struktur der einzelnen Proteine berechnen lässt. Die räumliche Struktur eines Proteins erlaubt Rückschlüsse auf seine genaue Funktionsweise. Die Proteinkristalle sind sehr empfindlich und verdampfen durch den Röntgenlaserblitz. Frühere Untersuchungen hatten jedoch gezeigt, dass der Kristall lange genug intakt bleibt, um vor dem Verdampfen das Beugungsbild zu erzeugen und damit seine räumliche Struktur preiszugeben.

    Die neue Studie untermauert nun, dass dies auch bei einzelnen Molekülen der Fall ist, die sich nicht in einem Kristallgitter befinden. „Unsere Beobachtungen bei den Buckyballs spielen wahrscheinlich bei den meisten anderen Molekülen eine Rolle“, betont Santra. Da viele Biomoleküle sehr schwer zu kristallisieren sind, hoffen Forscher, künftig auch aus Ensembles nicht kristallisierter Proteine oder sogar bei einzelnen Biomolekülen mit dem Röntgenlaser die Struktur bestimmen zu können. Die jetzt erzielten Ergebnisse legten die Basis für ein tieferes Verständnis sowie eine quantitative Modellierung des Strahlenschadens in Biomolekülen durch Röntgenlaserblitze, schreiben die Wissenschaftlerinnen und Wissenschaftler.

    An der Untersuchung waren Forscherinnen und Forscher der Universität von Connecticut, des Imperial College London, des US-Forschungszentrums SLAC, der Universität Göteborg, der Universität von Texas, des französischen Synchrotrons Soleil, der Kansas State University, des Max-Planck-Instituts für Kernphysik, der Tohoku-Universität in Japan, der Universität Potsdam, des Max-Born-Instituts, der Universität Hamburg und von DESY beteiligt. CFEL ist eine gemeinsame Einrichtung von DESY, Max-Planck-Gesellschaft und Universität Hamburg.

    DESY zählt zu den weltweit führenden Teilchenbeschleuniger-Zentren und erforscht die Struktur und Funktion von Materie – vom Wechselspiel kleinster Elementarteilchen, dem Verhalten neuartiger Nanowerkstoffe und lebenswichtiger Biomoleküle bis hin zu den großen Rätseln des Universums. Die Teilchenbeschleuniger und die Nachweisinstrumente, die DESY an seinen Standorten in Hamburg und Zeuthen entwickelt und baut, sind einzigartige Werkzeuge für die Forschung: Sie erzeugen das stärkste Röntgenlicht der Welt, bringen Teilchen auf Rekordenergien und öffnen neue Fenster ins Universum. DESY ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands, und wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert.

    ***

    Originalveröffentlichung:
    Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization; N. Berrah, A. Sanchez-Gonzalez, Z. Jurek, R. Obaid, H. Xiong, R. J. Squibb, T. Osipov, A. Lutman, L. Fang, T. Barillot, J. D. Bozek, J. Cryan, T. J. A. Wolf, D. Rolles, R. Coffee, K. Schnorr, S. Augustin, H. Fukuzawa, K. Motomura, N. Niebuhr, L. J. Frasinski, R. Feifel, C. P. Schulz, K. Toyota, S.-K. Son, K. Ueda, T. Pfeifer, J.P. Marangos and R. Santra; „Nature Physics“, 2019; DOI: 10.1038/s41567-019-0665-7


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Robin Santra
    DESY
    Center for Free-Electron Laser Science CFEL
    +49 40 8998-6300
    robin.santra@desy.de


    Originalpublikation:

    Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization; N. Berrah, A. Sanchez-Gonzalez, Z. Jurek, R. Obaid, H. Xiong, R. J. Squibb, T. Osipov, A. Lutman, L. Fang, T. Barillot, J. D. Bozek, J. Cryan, T. J. A. Wolf, D. Rolles, R. Coffee, K. Schnorr, S. Augustin, H. Fukuzawa, K. Motomura, N. Niebuhr, L. J. Frasinski, R. Feifel, C. P. Schulz, K. Toyota, S.-K. Son, K. Ueda, T. Pfeifer, J.P. Marangos and R. Santra; „Nature Physics“, 2019; DOI (nach Ablauf der Sperrfrist): http://dx.doi.org/10.1038/s41567-019-0665-7


    Weitere Informationen:

    https://www.desy.de/e409/e116959/index_ger.html?openDirectAnchor=1695&two_co... - Pressemitteilung mit Bild- und Videomaterial im Netz


    Bilder

    Computersimulation der Entwicklung eines Fußballmoleküls nach 0, 60 und 240 Femtosekunden.
    Computersimulation der Entwicklung eines Fußballmoleküls nach 0, 60 und 240 Femtosekunden.
    Bild: DESY, Zoltan Jurek
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
    Biologie, Chemie, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Computersimulation der Entwicklung eines Fußballmoleküls nach 0, 60 und 240 Femtosekunden.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).