Ultrakurze Laser-Lichtblitze ermöglichen Materialanalysen und medizinische Eingriffe von hoher Präzision. Physiker der Universität Bayreuth und der Universität Göttingen haben nun eine neue Methode entdeckt, wie sich winzige zeitliche Abstände zwischen Laserblitzen sehr schnell und exakt verändern lassen. Per Knopfdruck können die Abstände je nach Bedarf erhöht oder verringert werden. Die potenziellen Anwendungen reichen von der Laserspektroskopie über die Mikroskopie bis hin zur Materialbearbeitung. In der Fachzeitschrift Nature Photonics stellen die Forscher ihre neuen Erkenntnisse vor.
Laser-Lichtblitze haben längst ihren Weg aus den Forschungslaboren in die industrielle Fertigung und in medizinische Therapien gefunden. Bei diesen Anwendungen ist es oft entscheidend, dass die Blitze – sie werden auch als optische Solitonen bezeichnet – in bestimmten Abständen aufeinander folgen. Mittels einer speziellen Hochgeschwindigkeits-Messtechnik konnten die Forscher jetzt zeigen, wie sich ein in der Forschung weitverbreiteter Kurzpulslaser dazu bringen lässt, automatisch Paare aus Lichtpulsen mit dem jeweils gewünschten Abstand zu erzeugen. Kleine, durch elektrische Signale ausgelöste Störungen im grünen „Pumpstrahl“, der die Laserpulse erzeugt, reichen dafür aus.
Der Kern des neuen Verfahrens ist die gezielte Beeinflussung von Solitonen. Hierbei handelt es sich um Pakete von Lichtwellen, die in ultrakurzen Laserblitzen paarweise gebündelt auftreten können. „Die Resonanzanregung und die kurze Störung von Solitonen-Paaren lösen Effekte aus, die genutzt werden können, um ultrakurze Laserpulse gezielt zu kontrollieren. Hier eröffnet sich ein spannendes neues Forschungsfeld mit einer noch unabsehbaren Spanne an Anwendungsmöglichkeiten“, sagt Prof. Dr. Georg Herink aus Bayreuth, korrespondierender Autor der neuen Studie. „Bei der richtigen Frequenz genügt eine winzige äußere Modulation des Lasers, und ultrakurze Laserpulse geraten in eine gegenseitige resonante Schwingung. Ähnliche Phänomene kennen wir von Wassermolekülen in der Mikrowelle“, ergänzt Erstautor Felix Kurtz aus Göttingen.
Die jetzt veröffentlichten Erkenntnisse zeigen: Ultrakurzpuls-Laser werden auch in Zukunft nicht nur ein Werkzeug, sondern zugleich ein faszinierendes Objekt der Forschung bleiben.
Prof. Dr. Georg Herink
Experimentalphysik VIII
Universität Bayreuth
Telefon: +49 (0)921 / 55-3161
E-Mail: georg.herink@uni-bayreuth.de
F. Kurtz, C. Ropers, G. Herink: Resonant excitation and all-optical switching of femtosecond soliton molecules. Nature Photonics (2019), DOI: http://dx.doi.org/10.1038/s41566-019-0530-3
Lichtpulse können sich in Ultrakurzpuls-Lasern zu Paaren zusammenschließen. Durch gezielte Änderunge ...
Bild: UBT.
None
Merkmale dieser Pressemitteilung:
Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Lichtpulse können sich in Ultrakurzpuls-Lasern zu Paaren zusammenschließen. Durch gezielte Änderunge ...
Bild: UBT.
None
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).