idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
29.10.2019 16:15

Topologische Isolatoren: Elektronen halten Sicherheitsabstand

Kristian Lozina Presse- und Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

    Ein Team der Uni Würzburg hat die elektronischen Eigenschaften des neuartigen Materials Bismuten untersucht, einem Topologischen Isolator. Erstmals wurde beobachtet, dass dort die Beweglichkeit von Elektronen durch kollektive Effekte eingeschränkt werden kann.

    Topologische Isolatoren sind Zwittermaterialien. Das bedeutet, dass sie in ihrem Inneren keinen elektrischen Strom leiten können, sehr wohl aber an ihrem Rand. Gewöhnliche leitfähige Materialien, zum Beispiel Metallkabel, besitzen einen kleinen, aber endlichen elektrischen Widerstand. Dieser führt zu elektrischen Verlusten und das Material erhitzt sich. Ursache dafür ist die Streuung der Elektronen an Defekten in der Kristallstruktur des Leitermaterials. Hierdurch wird der Fluss der Elektronen gehemmt und ineffizient – wie bei einem Auto auf einem holprigen Feldweg, dessen Fahrt durch Schlaglöcher massiv abgebremst wird.

    Im Gegensatz dazu verhalten sich Topologische Isolatoren grundlegend anders. Hier können sich die Elektronen nur entlang eindimensionaler Leitungskanäle am Rand des Materials frei bewegen. Aufgrund eines physikalischen Phänomens – des Quanten Spin Hall Effekts – können sie dabei nicht mehr an Defekten gestreut werden. Dieser „topologische Schutz“ führt zu einem verlustfreien Strom. Statt eines holprigen Feldwegs gibt es hier quasi eine perfekte Autobahn für Elektronen.

    Wie eine Verengung der Fahrbahn

    Um das Verhalten der Elektronen in solchen Randkanälen besser zu verstehen, hat ein Forschungsteam der Lehrstühle Experimentelle Physik IV (Professor Ralph Claessen) und Theoretische Physik I (Professor Ronny Thomale) der Julius-Maximilians-Universität Würzburg Untersuchungen an dem kürzlich erstmals synthetisierten Topologischen Isolator Bismuten durchgeführt. Dabei handelt es sich um eine einzelne Lage von Bismut-Atomen, die in Form eines bienenwabenförmigen Gitters auf dem Halbleiter Siliziumkarbid aufliegt.

    Das Team der Experimentalphysik konnte durch ein Rastertunnelmikroskop beobachten, dass sich das Verhalten der Elektronen bei tiefen Temperaturen auffällig verändert: „Auf unserer Elektronenautobahn ist der Einfluss der tiefen Temperatur vergleichbar mit der Fahrbahnverengung bei einer Baustelle. Hier ist die Gefahr von Zusammenstößen zwischen den Elektronen deutlich erhöht. Um dies zu vermeiden und ausreichend Abstand halten zu können, vermindern die Elektronen daher ihre Geschwindigkeit“, erklärt Ralph Claessen. In Bismuten zeige sich dieses Verhalten in einer temperaturabhängigen Energie-Verteilung der Elektronen in den Randkanälen. Dieses Phänomen ist bereits aus anderen eindimensionalen Elektronensystemen als „Tomonaga-Luttinger-Verhalten“ bekannt.

    Klarheit durch Topologische Isolatoren

    Eine genauere theoretische Analyse des Teams der Theoretischen Physik I zeigt, dass der Effekt zwischen zwei Elektronen umso stärker zu Tage tritt, je enger der Randkanal ist – wie bei einer Autobahnbaustelle mit nur einem statt zweier Fahrstreifen.
    „Hier müssen alle Autos Rücksicht aufeinander nehmen und die Geschwindigkeit anpassen, um Kollisionen zu vermeiden. Obwohl dieser Effekt grundsätzlich in jedem verengten Leitungskanal auftritt, ist er unter den perfekten Autobahnbedingungen des Topologischen Isolators am deutlichsten zu beobachten.“, sagt Ronny Thomale. Dies sei in der vorliegenden Arbeit zum ersten Mal in beeindruckender Klarheit gelungen.

    Die Elektronenautobahnen am Rand von Topologischen Isolatoren könnten Bauelemente künftiger Mikroelektronik werden, in der man die besonders geschützten Leitungskanäle für eine verlustfreie und ultraschnelle Computertechnologie verwendet. Dies ist auch Thema und Ziel des Exzellenzclusters „ct.qmat" und des Sonderforschungsbereichs „ToCoTronics“ in der Würzburger Physik. Hierfür muss jedoch zunächst das Verkehrsverhalten der Elektronen vollständig verstanden werden.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Ralph Claessen, Experimentelle Physik IV, Universität Würzburg, T +49 (931) 31 85732, claessen@physik.uni-wuerzburg.de;

    Prof. Dr. Ronny Thomale, Theoretische Physik I, Universität Würzburg, T +49 (931) 31 86225, rthomale@physik.uni-wuerzburg.de


    Originalpublikation:

    R. Stühler, F. Reis, T. Müller, T. Helbig, T. Schwemmer, R. Thomale, J. Schäfer, R. Claessen: Tomonaga-Luttinger liquid in the edge channels of a quantum spin Hall insulator; Nature Physics (2019); DOI: 10.1038/s41567-019-0697-z


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).