idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
20.12.2019 11:59

Designing stable electrocatalysts for a clean energy future

Yasmin Ahmed Salem M.A. Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Eisenforschung GmbH

    A team of scientists from the Max-Planck-Institut für Eisenforschung (MPIE), the Massachusetts Institute of Technology (MIT) and the Forschungszentrum Jülich (FZ) discovered core-shell nanoparticles based on platinum and an inexpensive carbide core as active, stable and cost-efficient electrocatalysts for the oxygen reduction reaction - the cathode reaction in a fuel cell. The recent findings were published in Nature Materials.

    Polymer electrolyte fuel cells display one of the key elements for the transformation of chemical into electrical energy. However, the currently employed electrocatalysts still contain large amounts of noble metals due to the high durability requirements. This makes them cost- and resource intensive. A core-shell system as catalyst enables the reduction of precious metals while potentially increasing its activity and stability. It ideally combines an inexpensive and easily manufactured core with a shell made of a precious metal that is only a few monolayers thick. “We have found a way, to reduce the noble metal content up to 60-70% while simultaneously stabilizing the non-noble core. While the shells are made out of platinum, the cores consist of inexpensive metal carbides and nitrides. The employed catalysts are more stable during the oxygen reduction reaction compared to its bare noble-metal counterpart while offering similar activity at a lower material price.”, explains Daniel Göhl, doctoral student at the MPIE and first author, together with Aaron Garg from MIT, of the Nature publication.

    A special focus was laid on the degradation mechanism and the prerequisites to stabilize core-shell materials. The key for the successful evaluation was the coupling of electrochemical instruments with highly sensitive analysis tools. This includes in situ measurements with the scanning flow cell, a method which was developed at the MPIE, and ex situ identical location transmission electron microscopy at the FZ. The scientists found out that the catalyst retains the beneficial core shell structure over 10,000 degradation cycles depending on the homogeneity of the shell. Based on these results, the scientists aim to increase the amount of homogenous core-shell particles and to facilitate the synthesis. “The gained insights yield from a strong partnership between different institutions bringing together fundamental knowledge about the synthesis with an in-depth characterization with highest quality from various perspectives”, so Dr. Marc Ledendecker, one of the corresponding authors of the Nature publication and project coordinator of the project funded by the Federal Ministry of Economic Affairs and Energy.

    The research at the MPIE was funded by the Federal Ministry of Economic Affairs and Energy and at the MIT by the Toyota Research Institute.


    Wissenschaftliche Ansprechpartner:

    m.ledendecker@mpie.de


    Originalpublikation:

    D. Göhl, A. Garg, P. Paciok, K.J.J. Mayrhofer, M. Heggen, Y. Shao-Horn, R. Dunin-Borkowski, Y. Roman-Leshkov, M. Ledendecker: Engineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells. In Nature Materials (2019), DOI: 10.1038/s41563-019-0555-5.


    Weitere Informationen:

    https://www.mpie.de/4175558/nature-materials-ledendecker


    Bilder

    Scanning flow cell was used to do in situ measurements. The Max Planck scientists and their colleagues  found ways to stabilize electrocatalysts and make them less expensive.
    Scanning flow cell was used to do in situ measurements. The Max Planck scientists and their colleagu ...
    Daniel Göhl, Max-Planck-Institut für Eisenforschung GmbH
    None

    Core-shell nanoparticles for the electrocatalytic oxygen reduction reaction - the cathode reaction in a fuel cell.
    Core-shell nanoparticles for the electrocatalytic oxygen reduction reaction - the cathode reaction i ...
    Marc Ledendecker, Max-Planck-Institut für Eisenforschung GmbH
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie, Energie, Maschinenbau, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Scanning flow cell was used to do in situ measurements. The Max Planck scientists and their colleagues found ways to stabilize electrocatalysts and make them less expensive.


    Zum Download

    x

    Core-shell nanoparticles for the electrocatalytic oxygen reduction reaction - the cathode reaction in a fuel cell.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).