idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
15.01.2020 12:23

Sternenkollision im All

Till Bayer Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    Zusammen mit einer internationalen Forschungskooperation haben Physiker der Universität Jena das Gravitationswellensignal GW190425 analysiert, das von den Gravitationswellendetektoren LIGO und Virgo aufgezeichnet wurde. Die Forscher nehmen an, dass die Gravitationswelle durch die Verschmelzung zweier Neutronenstrerne ausgelöst wurde. Bemerkenswert ist vor allem die berechnete Gesamtmasse dieses Sternsystems. Sie zeigt, dass Doppelneutronensternsysteme womöglich vielfältiger sind als bisher gedacht.

    Wenn zwei Neutronensterne miteinander kollidieren, dann bebt sprichwörtlich das All. Ihre Verschmelzung erzeugt Gravitationswellen, die sich in alle Richtungen des Universums ausbreiten und – irgendwann auch auf der Erde messbar sind. So geschehen auch im April des vergangenen Jahres, als die Gravitationswellendetektoren Virgo in Italien und LIGO in den USA das Gravitationswellensignal GW190425 aufzeichneten. Jetzt wurde dieses Signal von einer internationalen Forschungskooperation analysiert, an der Prof. Dr. Sebastiano Bernuzzi und die Doktorandin Rosella Gamba vom Theoretisch-Physikalischen Institut der Friedrich-Schiller-Universität Jena beteiligt waren. Ihre Berechnungen sollen demnächst in der Fachzeitschrift „Astrophysical Journal Letters“ erscheinen.

    Demnach ist GW190425 ein Gravitationswellensignal, das bei der Verschmelzung eines sehr massereichen binären Sternsystems entstanden sein muss. Bei der Kollision im All, die rund 500 Millionen Lichtjahre von der Erde entfernt stattgefunden hat, sind zwei Sterne mit einer Gesamtmasse des 3,4-Fachen der Masse unserer Sonne ineinander gestürzt.

    Verschiedene Theorien für Entstehung des Signals

    Welcher Art die beiden kollidierenden Sterne waren, dafür gibt es verschiedene Erklärungen. So könnte GW190425 durch die Verschmelzung zweier Neutronensterne entstanden sein. Diese Erklärung nehmen die Forscher als die wahrscheinlichste an, obwohl weitere Beweise dafür, wie elektromagnetische Signale, Neutrinos oder geladene Teilchen bislang nicht gefunden wurden. Allein auf Basis der Gravitationswellen-Daten wollen die Forscher deshalb nicht ausschließen, dass ein Schwarzes Loch an der Fusion beteiligt gewesen war.

    „Wenn wir davon ausgehen, dass ein binäres Neutronensternsystem für das Signal verantwortlich ist, wäre die berechnete Masse in Höhe von 3,4 Sonnenmassen ein außergewöhnlicher Wert“, sagt Prof. Sebastiano Bernuzzi. Die Masse ähnlicher Systeme liegt üblicherweise weiter darunter, im Bereich zwischen 2,5 und 2,9 Sonnenmassen. „GW190425 wäre der Beweis, dass diese Sternsysteme vielfältiger sind und möglicherweise auch auf andere Weise entstehen können als erwartet.“

    Beitrag zum Verständnis von Neutronensternen

    Die aus dem Gravitationswellensignal gewonnenen Informationen könnten den Forschern zudem dabei helfen, die rätselhaften Vorgänge im Innern von Neutronensternen besser zu verstehen. Über Neutronensterne ist bekannt, dass sie sich bilden, wenn besonders massereiche Sterne am Ende ihrer Lebenszeit in sich zusammenfallen. Ihr Durchmesser ist in kosmischen Dimensionen geradezu winzig und beträgt nur ca. 15 Kilometer. Aufgrund ihrer enormen Dichte sind sie trotzdem meist schwerer als unsere Sonne.

    Die extremen Bedingungen, die für diese Eigenschaften verantwortlich sind, lassen sich in Experimenten auf der Erde nicht einfach nachbilden. Auch deshalb will Bernuzzi mit seinem Team die Forschung an GW190425 fortsetzen. Schon jetzt weiß der Jenaer Physiker, was unmittelbar nach der Fusion passierte, die das Gravitationswellensignal auslöste: „Unseren Computersimulationen zufolge, die auf Einsteins Allgemeiner Relativitätstheorie basieren, hat sich mit sehr hoher Wahrscheinlichkeit ein Schwarzes Loch gebildet.“


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Sebastiano Bernuzzi
    Theoretisch-Physikalisches Institut der Friedrich-Schiller-Universität Jena
    Fröbelstieg 1, 07743 Jena
    Tel.: 03641 / 947111
    E-Mail: sebastiano.bernuzzi[at]uni-jena.de


    Originalpublikation:

    LIGO-Virgo Collaboration: GW190425: Observation of a Compact Binary Coalescence with Total Mass ~3.4 Msun. Submitted to The Astrophysical Journal Letters. Preprint: https://arxiv.org/abs/2001.01761


    Bilder

    Der Ursprung des Gravitationswellensignals GW190425 liegt vermutlich in der Verschmelzung eines Doppel-Neutronensternsystems (künstlerische Darstellung).
    Der Ursprung des Gravitationswellensignals GW190425 liegt vermutlich in der Verschmelzung eines Dopp ...
    National Science Foundation/LIGO/Sonoma State University/A. Simonne
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Der Ursprung des Gravitationswellensignals GW190425 liegt vermutlich in der Verschmelzung eines Doppel-Neutronensternsystems (künstlerische Darstellung).


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).