idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
04.02.2020 09:18

Research: Single atom as measuring probe uses quantum information for the first time

Melanie Löw Presse- und Öffentlichkeitsarbeit
Technische Universität Kaiserslautern

    Sensors collect certain parameters such as temperature and air pressure in their proximity. Physicists from Kaiserslautern and a colleague from Hanover have succeeded for the first time in using a single caesium atom as a sensor for ultracold temperatures. To determine the measured data, they utilize the quantum states, the spin or angular momentum of the atom. With these spins, they measured the temperature of an ultra-cold gas and the magnetic field. The system is characterized by a particularly high sensitivity. Such sensors could be used in the future, for example, to investigate quantum systems without interference. The work was published in the renowned journal "Physical Review X".

    In their experiments, the scientists around Professor Dr Artur Widera, who researches quantum systems, observe individual caesium atoms in a rubidium gas that has cooled down to near absolute zero temperature. The temperature is only a billionth of a fraction of a degree above this zero point. In their current study they have investigated whether the spin states of the caesium atom can be used to gain information. "The term spin refers to the intrinsic angular momentum of an atom," explains Professor Widera of Technische Universität Kaiserslautern (TUK). "In caesium, there are seven different orientations for this spin." The research focused on the gas temperature.

    Once the single caesium atom is introduced into the rubidium gas, the rubidium atoms collide with it. "This allows angular momentum to be exchanged between the atoms until a balance of spin is achieved," explains Dr Quentin Bouton, lead scientist and first author of the study. The researchers measure the spin of the individual atom and can thus determine the temperature. Comparing this method with conventional measuring methods, where physicists obtain the same temperature value, confirms its success.

    The special feature of the study was the high sensitivity of the measurement. In a typical measurement, it is necessary to bring the sensor into contact with the cold gas and wait until equilibrium is reached. "In fact, for quantum sensors there is a fundamental limit to their sensitivity in equilibrium. However, we included information about the interactions between caesium and rubidium in advance, so we did not have to wait until the atom was in equilibrium with the rubidium gas," Bouton continues. As a result, the measuring system of the Kaiserslautern researchers has a sensitivity that is about ten times higher than the fundamental quantum limit requires. "We only needed three spin exchange processes, in other words three atomic collisions, to arrive at a result," Bouton continues. Thus the perturbation of the rubidium gas is also limited to only three quanta. This is an important step towards measuring sensitive quantum systems with as little perturbation as possible, which are of interest for future applications in quantum technology.

    "This is the first time we have used a single atom as a sensor that uses quantum information and is significantly better than a classic sensor," Widera points out. The physicists also conducted this experiment with magnetic fields and recorded the magnetic states. This novel and highly sensitive sensor is suitable, for example, for examining fragile quantum systems almost without destruction.

    In addition to the working group of Professor Widera, Professor Dr Eberhard Tiemann from Hanover was involved in the work. The study was published in the renowned journal “Physical Review Letters.” "Single-Atom Quantum Probes for Ultracold Gases Boosted by Nonequilibrium Spin Dynamics"
    DOI: 10.1103/PhysRevX.10.011018


    Wissenschaftliche Ansprechpartner:

    Prof. Dr Artur Widera
    Department for Individual Quantum Systems
    E-mail: widera[at]physik.uni-kl.de
    Phone: 0631 205-4130


    Originalpublikation:

    “Physical Review Letters.” "Single-Atom Quantum Probes for Ultracold Gases Boosted by Nonequilibrium Spin Dynamics"
    DOI: 10.1103/PhysRevX.10.011018


    Bilder

    Professor Dr. Artur Widera
    Professor Dr. Artur Widera
    Credit: Koziel/TUK
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Professor Dr. Artur Widera


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).