idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
06.03.2020 15:57

Big Data in wind energy – how digitalization can make wind power more cost-efficient

Dr. Corinna Dahm-Brey Presse & Kommunikation
Carl von Ossietzky-Universität Oldenburg

    Interdisciplinary research team develops virtual assistant for wind farms

    The research project WiSA big data ("Wind farm virtual Site Assistant for O&M decision support - advanced methods for big data analysis") is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) with a total of 2.6 million Euros over a period of three years. Within the framework of WiSA big data, scientists and partners from industry are analyzing large amounts of high-resolution operating data of wind turbines. New and advanced analysis methods will help to detect malfunctions in the operation of wind turbines at an early stage and to optimize the maintenance of the turbines.

    In modern wind turbines, large amounts of operating data are recorded with a high temporal resolution. Up to now, however, this data has only been archived in part and in the form of ten-minute mean values and has not been fully evaluated. In addition, measurement noise often overlays the data, which complicates the analysis. "In our joint project, we want to exploit this treasure of data and make it usable with new and advanced analysis methods," says project coordinator Prof. Dr. Joachim Peinke from the Center for Wind Energy Research (ForWind) at the University of Oldenburg. "The analysis of the data should help us to detect or even predict errors in the operation of wind turbines at an early stage". However, there is still a significant need for research to unlock the potential of the information contained in the data.

    The collected data include weather data, information from repair and maintenance reports and high-frequency sensor measurements such as rotor speed, power and temperatures. The project partners intend to collect, manage, analyze and evaluate these data on a specially developed hardware and software platform. The aim of the project is to develop a virtual assistant for the wind industry. This tool should enable more precise fault diagnosis and provide wind farm operators with decision-making support for the predictive maintenance of wind turbines. "By evaluating the data, we will be able to determine much more accurately when irregularities occur and what the best possible procedure would be. This will enable the wind farm operator to react immediately and get the turbine back into normal operation quickly," says Peinke. Such a virtual assistant would simplify the time-consuming and expensive maintenance and service of wind turbines at sea and thus help to generate wind power more cost-effectively.

    In WiSA big data, the project consortium wants to build a bridge between valid methodological research and industrial application testing. In addition to the University of Oldenburg with the Center for Wind Energy Research (ForWind), the Institute for Chemistry and Biology of the Marine Environment (ICBM) and the Department of Business Informatics / Very Large Business Applications (VLBA), six other partners are involved in the joint project: the University of Duisburg-Essen, the Fraunhofer Institute for Wind Energy Systems IWES, the OFFIS - Institute for Information Technology, Ramboll Deutschland GmbH, Ocean Breeze Energy GmbH & Co. KG and Deutsche Windtechnik X-Service GmbH.

    The project consortium is supported among others by the associated partners Vattenfall Europe Windkraft GmbH and ADDITIVE Soft- und Hardware für Technik und Wissenschaft GmbH.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Joachim Peinke, Phone: +49 441 798-5050, E-mail: peinke@forwind.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Energie, Informationstechnik, Umwelt / Ökologie, Wirtschaft
    überregional
    Forschungsprojekte, Kooperationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).