idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
18.03.2020 13:24

Licht steuert Gehirnzellen: Neues EU-Projekt an der Universität Bayreuth zielt auf Therapien neuronaler Störungen

Christian Wißler Pressestelle
Universität Bayreuth

    Störungen der Signalübertragung im Gehirn sollen künftig mit Hilfe von Lichtsignalen untersucht und gemildert werden. Dies ist das Ziel von NEUROPA, eines neuen Verbundprojekts, an dem die Forschergruppe um Prof. Dr. Andreas Möglich an der Universität Bayreuth wesentlich beteiligt ist. Die Wissenschaftler wollen mittels Laserbestrahlung Photorezeptor-Proteine steuern, um Netzwerke von Nervenzellen im Gehirn therapeutisch zu beeinflussen. Insbesondere werden sie dieses Vorgehen auf die Alzheimer- und die Huntington-Krankheit anwenden, die sich in Zukunft auf diesem Weg möglicherweise abschwächen lassen. Die EU fördert das Vorhaben in den nächsten drei Jahren mit 3,6 Millionen Euro.

    Schon länger ist bekannt, dass die Großhirnrinde des Menschen Nervenzellen enthält, die als Projektionsneuronen klassifiziert werden. Sobald diese Zellen aktiv sind, beeinflussen sie Netzwerke von Nervenzellen, die sich in tieferen Schichten des Gehirns befinden. Hier kann es, beispielsweise infolge von Erkrankungen oder Unfällen, zu Unterbrechungen oder Verzögerungen wichtiger Signalübertragungen kommen. Mit dem Ziel, solche Störungen auf schonende Weise zu beseitigen oder abzuschwächen, sollen Projektionsneuronen in der Großhirnrinde künftig zielgenau über Laserlicht aktiviert werden.

    Zu diesem Zweck planen die am NEUROPA-Projekt beteiligten Forscher die Entwicklung neuartiger Phytochrom-Photorezeptoren. Phytochrome sind Proteine, die zwischen zwei Zuständen hin und her geschaltet werden können. Von der Wellenlänge des Lichts, dem sie ausgesetzt sind, hängt es ab, in welcher Weise sie aktiv sind und welche Impulse sie somit an ihre Umgebung abgeben. Die neu zu entwickelnden Phytochrome sollen durch kompakte Laser so gesteuert werden, dass sie ihrerseits die Projektionsneuronen in der Großhirnrinde in der angestrebten Weise aktivieren. Unregelmäßigkeiten bei der Signalübertragung in tieferen Schichten des Gehirns sollen dadurch besser verstanden und in Zukunft auch gelindert werden.

    Aber wie gelangen die durch Laserstrahlen steuerbaren Phytochrome an therapeutisch geeignete Stellen in der Großhirnrinde? Es wäre durchaus möglich, die Phytochrome durch die Schädeldecke in die Großhirnrinde einzuspritzen. Doch das NEUROPA-Projekt will derartige invasive Verfahren vermeiden und stattdessen eine innovative, nicht-invasive Lösung entwickeln. Erkenntnisse und Verfahren der Gentechnik sollen künftig dafür sorgen, dass sich die Phytochrome an geeigneten Stellen der Großhirnrinde von selbst herausbilden. Zudem können die verwendeten Laserstrahlen mit Mikrometer-Wellenlänge die Schädeldecke durchdringen.

    „Unser europäisches Verbundprojekt leistet Pionierarbeit auf einem noch jungen Forschungsfeld. Gemeinsam mit unseren Partnern wollen wir neue Erkenntnisse aus der Optogenetik, der Photonik und der Neurologie zusammenführen, um bei der Entwicklung schonender Therapien von Nerven-Netzwerken im Gehirn neuartige Ansätze zu entwickeln. Dies gilt insbesondere im Hinblick auf schwere neurodegenerative Erkrankungen wie Alzheimer oder Chorea Huntington“, sagt Prof. Dr. Andreas Möglich, Professor für Biochemie an der Universität Bayreuth. Seine Forschungsgruppe verfügt über langjährige Erfahrungen auf dem Gebiet der Photorezeptoren und hat mit Veröffentlichungen auf dem Gebiet der Optogenetik in letzter Zeit international große Beachtung gefunden.

    Internationale Forschungspartner und Forschungsförderung

    Im Verbundprojekt NEUROPA arbeiten sechs Partnereinrichtungen zusammen: die Universität Bayreuth, die Aston University in Birmingham, die Universität Oulu, die Universität Barcelona, die Université de Sorbonne in Paris und die Pharmacoidea Ltd in Szeged. NEUROPA wird von der Europäischen Union im Rahmen von „Horizon 2020“ als ein FET-Open-Projekt (Future and Emerging Technologies) gefördert. Projekte dieser Art sind sehr kompetitiv und zielen darauf ab, hochinnovative und technologisch anspruchsvolle Forschungsideen so weiterzuentwickeln, dass nutzbringende Anwendungen in Wirtschaft und Gesellschaft in greifbare Nähe rücken.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Andreas Möglich
    Lehrstuhl für Biochemie
    Universität Bayreuth
    Telefon: +49 (0)921 / 55-7835
    E-Mail: andreas.moeglich@uni-bayreuth.de


    Bilder

    Anregung von Phytochromen durch Rotlicht.
    Anregung von Phytochromen durch Rotlicht.
    Foto: Christian Wißler.
    None

    Beispiel für einen Phytochrom-Photorezeptor.
    Beispiel für einen Phytochrom-Photorezeptor.
    Grafik: Andreas Möglich.
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
    Biologie, Chemie, Medizin
    überregional
    Forschungsprojekte, Kooperationen
    Deutsch


     

    Anregung von Phytochromen durch Rotlicht.


    Zum Download

    x

    Beispiel für einen Phytochrom-Photorezeptor.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).