idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.04.2020 16:22

Heavy-electron quantum criticality and single-particle spectroscopy

Dipl.-Übers. Ingrid Rothe Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Chemische Physik fester Stoffe

    Electronic correlations give rise to a plethora of interesting phenomena and phases, including magnetism and superconductivity. One particularly intriguing example is the hybridization between localized (often 4f) and conduction electrons in so-called heavy fermion materials. Here, the hybridization may result in the generation of low-energy scales that can induce quantum criticality and unconventional superconductivity. Today, the suppression of an order parameter by a non-thermal, experimentally controllable variable like pressure, is an established route towards high-temperature superconductivity through which quantum criticality has gained a new impetus.

    Quantum criticality itself, however, turned out to come in different manifestations. Specifically in transition metal compounds, quantum criticality can usually be discussed within a scheme of itinerant, i.e. spin-density wave, order. Yet, other materials defy such a description, as unequivocally shown by inelastic neutron scattering experiments on CeCu5.9Au0.1. Here, a novel picture was called for, going substantially beyond the Landau framework based solely on order-parameter fluctuations.
    The present article published in Rev. Mod. Phys. reviews the recent progress made in this perplexingly complex research field with seemingly conflicting input. Intimately tied to any theoretical progress is the quest for new experimental insight. Photoemission is a direct means of determining the band structure of solids. It thus has the potential to give momentum-resolved information on the one-electron Green function. The main issues in applying this technique to the f-electron systems has not only been in reaching the required low temperature but also in obtaining sufficient energy resolution. On the other hand, Scanning Tunneling Spectroscopy provides access to the one-electron Green function with sufficient resolution but due to quantum interference effects the interpretation of the measurements can be complicated. Results obtained by both experimental techniques on the two archetypical (classes of) compounds, YbRh2Si2 and CeMIn5, are critically evaluated.
    It is this tight interplay between recent theoretical and experimental advances, with emphasis on the one-electron Green function of Kondo systems, on which this review focuses while providing a broader base for ongoing discussions and open issues. As such, this Colloquium article is most timely, and certainly presents a profound and valuable overview of the current aspects and literature in quantum criticality of condensed matter.

    The research at the Max Planck Institute for Chemical Physics of Solids (MPI CPfS) in Dresden aims to discover and understand new materials with unusual properties.
    In close cooperation, chemists and physicists (including chemists working on synthesis, experimentalists and theoreticians) use the most modern tools and methods to examine how the chemical composition and arrangement of atoms, as well as external forces, affect the magnetic, electronic and chemical properties of the compounds.
    New quantum materials, physical phenomena and materials for energy conversion are the result of this interdisciplinary collaboration.
    The MPI CPfS (www.cpfs.mpg.de) is part of the Max Planck Society and was founded in 1995 in Dresden. It consists of around 280 employees, of which about 180 are scientists, including 70 doctoral students.


    Wissenschaftliche Ansprechpartner:

    Steffen Wirth, MPI CPfS Dresden
    Steffen.Wirth@cpfs.mpg.de


    Originalpublikation:

    https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.92.011002

    Rev. Mod. Phys. 92, 011002 (2020)
    DOI: 10.1103/RevModPhys.92.011002


    Bilder

    Phase diagram of a local quantum critical metal.
    Phase diagram of a local quantum critical metal.
    Grafik: Steffen Wirth, MPI CPfS
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Chemie, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Phase diagram of a local quantum critical metal.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).