Aktuell gibt es keinen für Brennstoffzellen maßgeschneiderten industriellen Recyclingprozess. Im Rahmen des Projekts „BReCycle“ erarbeitet ein Forschungskonsortium unter Leitung des Fraunhofer IWKS nun ein Kreislaufwirtschaftskonzept speziell für PEM-Brennstoffzellen.
Nachhaltigere, effizientere und umweltfreundlichere Technologien zur Energiewand-lung wie Brennstoffzellen werden im Zuge der Energie- und Mobilitätswende eine immer größere Rolle spielen. Schon heute kommen Brennstoffzellen, vor allem Poly-mer-Elektrolyt-Membran-Brennstoffzellen (PEMFC) in wasserstoffbetriebenen Auto-mobilen zum Einsatz. Mit der steigenden Verbreitung dieser Technologie wird spätes-tens 2030 eine größere Menge dieses Brennstoffzellentyps sein Lebensende erreicht haben. Aufgrund des hohen Anteils an wertvollen Technologiemetallen und ökologi-schen Betrachtungen ist ein effizientes Recycling von in PEM-Brennstoffzellen enthal-tenen Materialien notwendig. Jedoch ist ein für Brennstoffzellen maßgeschneiderter Recyclingprozess derzeit industriell nicht verfügbar.
Dieser Herausforderung stellt sich nun ein Konsortium unter Leitung der Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS. Im Rahmen des Projekts „BReCycle“ erarbeitet das Konsortium, bestehend aus den fünf Forschungs- und Industriepartnern Fraunhofer IWKS, Proton Motor Fuel Cell GmbH, MAIREC Edel-metallgesellschaft mbH, Electrocycling GmbH und KLEIN Anlagenbau AG, ein Kreis-laufwirtschaftskonzept speziell für PEM-Brennstoffzellen. Gefördert wird das Vorhaben innerhalb des 7. Energieforschungsprogramms „Innovationen für die Energiewende“ des Bundesministeriums für Wirtschaft und Energie.
Ziel des Vorhabens ist es, ein nachhaltiges Verfahren zur Aufbereitung von Brennstoff-zellen zu entwickeln, mit dem hochwertige Materialfraktionen insbesondere aus der Elektrodenbeschichtung generiert und die Polymermembran abgetrennt werden kön-nen. Für den Recyclingmarkt von Brennstoffzellen sind vor allem die wertvollen Edel-metalle wie Platin und Ruthenium von Bedeutung. Auf diese Metalle sind auch derzeit verwendete allgemeine Recyclingprozesse für Edelmetalle ausgelegt, in denen Polymer-Elektrolyt-Membran-Brennstoffzellen derzeit größtenteils verarbeitet werden. Platin und Ruthenium, sowie weitere wertvolle und seltene Metalle, werden in pyrometallur-gischen Metallrecyclingprozessen zurückgewonnen. Jedoch entstehen beim pyrometal-lurgischen Recycling von Brennstoffzellen hochgiftige Fluorverbindungen aus der fluo-rierten Nafion-Membran, wodurch eine großformatige Umsetzung eine sehr auf-wendige Abgasreinigung voraussetzt. Bislang existieren keine industriell effizient ein-setzbaren Recyclingprozesse, welche vor der Schmelzaufbereitung die Polymermemb-ranen ausreichend separieren und damit die Gefahr der Entstehung von Fluorwasser-stoff im Schmelzprozess unterbinden. Zudem gehen unedlere Metalle wie Stahl oder Aluminium im Prozess größtenteils verloren.
Im Projekt BReCycle soll ein neuer Ansatz entwickelt werden, der einen hohen Rück-gewinnungsgrad der eingesetzten Rohstoffe sicherstellt und hinsichtlich Umweltver-träglichkeit (insbesondere Energiebilanz) und Wirtschaftlichkeit überlegen ist. Gleichzei-tig sollen Aspekte des kreislaufgerechten Produktdesigns (Design for Recycling bzw. Design for Circularity) untersucht und umgesetzt werden, um die Recyclingfähigkeit von Brennstoffzellen zu erhöhen sowie den Einsatz von Sekundärwerkstoffen im Sinne des Ressourcenschutzes zu forcieren und darauf basierend neue Geschäftsmodelle zu entwickeln.
Das Recyclingverfahren selbst soll sowohl für komplette Brennstoffzellenmodule als auch für einzelne Komponenten ausgelegt sein. Dazu wird zunächst ein Prozess zur Vorzerlegung entwickelt, um Bauteile wie elektrische Anschlüsse oder Kabel zu ent-nehmen. Zur weiteren selektiven Zerkleinerung kommt die elektrohydraulische Zerklei-nerung (EHZ) zum Einsatz. Dabei werden die vorzerkleinerten Baugruppen in einen mit Wasser gefüllten Reaktor gegeben und mittels Schockwellen (durch elektrische Entla-dung erzeugte Druckwellen) materialselektiv zerkleinert. Insbesondere soll hier die platinhaltige, katalytisch aktive Schicht auf den Elektroden vom Kunststoff abgetrennt werden.
Die so zerkleinerten Materialien können anschließend über einfache physikalische Trennverfahren wie Sieben und Filtern in die Materialfraktionen Katalysatorpulver und Graphite sowie Polymer und Metalle aufgetrennt werden. Für die Trennung der Poly-mermembran von der Metallfracht wird eine Identifizierung mittels IR-Sensorik und entsprechender bauteilselektiver Ausschleusung im Verfahren getestet. Die erhaltenen Metallfraktionen können anschließend über etablierte metallurgische Aufbereitungsver-fahren effizient aufbereitet werden.
Durch die angestrebte starke Aufkonzentration der verschiedenen Wertstoffe wie Platin, Ruthenium und andere Metalle aus der katalytisch aktiven Schicht wird bei-spielsweise bei einer nachgeschalteten nasschemischen Aufbereitung ein deutlich effi-zienterer Einsatz an Chemikalien benötigt. Die Einsparung von Prozessschritten durch die spezifische Aufbereitung zuvor separierter Wertstoffe bewirkt einen signifikanten ökologischen und insbesondere ökonomischen Vorteil gegenüber anderen Prozessen.
Der Projektansatz zielt auf eine hohe Reinheit aller generierten Fraktionen ab, indem der materialselektive Aufschluss des Produkts eine effektivere Separation der Fraktio-nen ermöglicht. Die Zielfraktion ist das aufkonzentrierte Edelmetall, welches dann erneut der Edelmetallverwertung zugeführt werden kann.
Nach Abschluss des Projekts werden die gewonnenen Erkenntnisse sukzessive bei den beteiligten Industriepartnern in die Verarbeitungsprozesse für PEM-Brennstoffzellen einfließen. Die Ergebnisse aus der Verfahrensentwicklung dienen außerdem als Basis für weitere Forschungsarbeiten, um eine Rücknahme- und Recyclinglösung einschließ-lich der Realisierung spezifischer neuer Anlagenmodule etablieren zu können. Parallel sind in diesem Zeitraum innovative Circular-Economy-Geschäftsmodelle gemeinsam mit allen Projektpartnern entsprechend der gewonnenen Erkenntnisse und der Marktsitua-tion weiter zu konkretisieren.
Projektpartner:
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS, Alzenau & Hanau
Proton Motor Fuel Cell GmbH, Puchheim
MAIREC Edelmetallgesellschaft mbH, Alzenau
Electrocycling GmbH, Goslar
KLEIN Anlagenbau AG, Freudenberg
Dauer:
1.3.2020 – 28.2.2023
Förderer:
Bundesministerium für Wirtschaft und Energie
Die Fraunhofer-Gesellschaft mit Sitz in Deutschland ist die weltweit führende Organisation für anwendungsorientierte Forschung. Mit ihrer Fokus-sierung auf zukunftsrelevante Schlüsseltechnologien sowie auf die Verwertung der Ergebnisse in Wirtschaft und Industrie spielt sie eine zentrale Rolle im Innovationsprozess. Als Wegweiser und Impulsgeber für innovative Entwicklungen und wissenschaftliche Exzellenz wirkt sie mit an der Gestaltung unserer Gesellschaft und unserer Zukunft. Die 1949 gegründete Organisation betreibt in Deutschland derzeit 74 Institute und For-schungseinrichtungen. Rund 28 000 Mitarbeiterinnen und Mitarbeiter, überwiegend mit natur- oder ingenieurwissenschaftlicher Ausbildung, erarbeiten das jährliche Forschungsvolumen von 2,8 Milliarden Euro. Davon fallen 2,3 Milliarden Euro auf den Leistungsbereich Vertragsfor-schung.
Die Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS mit Standorten in Alzenau und Hanau wurde im Jahr 2011 von der Fraunhofer-Gesellschaft unter dem Dach des Fraunhofer ISC gegründet. In den Geschäftsbereichen Ressourcenstrategie, Recycling und
Wertstoffkreisläufe und Substitution wird daran gearbeitet, die Rohstoffversorgung unserer Industrie langfristig zu sichern und damit eine führen-de Position in der Hochtechnologie auch zukünftig zu ermöglichen. Dafür werden zusammen mit Industriepartnern innovative Trenn-, Sortier-, Aufbereitungs- und Substitutionsmöglichkeiten erforscht.
Redaktion und Pressekontakt
Jennifer Oborny | Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS | Brentanostraße 2a | 63755 Alzenau | Telefon +49 (0)6023 32039-803 | www.iwks.fraunhofer.de | jennifer.oborny@iwks.fraunhofer.de
Dr.-Ing. Sven Grieger (Projektkoordinator)
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie IWKS
Telefon +49 (0)6023 32039-839
sven.grieger@iwks.fraunhofer.de
Beispiel eines Brennstoffzellenstacks
Proton Motor Fuell Cell GmbH
None
Merkmale dieser Pressemitteilung:
Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler
Elektrotechnik, Energie, Umwelt / Ökologie, Verkehr / Transport
überregional
Buntes aus der Wissenschaft, Forschungsprojekte
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).