idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.04.2020 09:31

60 Jahre Laser-Technologie: Von Medizin bis Mobilität, von Nano bis Maxi lässt sich Licht als Werkzeug nutzen

Zuse-Gemeinschaft Presse- und Öffentlichkeitsarbeit
Zuse-Gemeinschaft

    Berlin, 21. April 2020. Licht als Werkzeug zu nutzen: Das bietet seit der Erfindung der Laser-Technologie neue Möglichkeiten in Wirtschaft und Forschung: Im Mai 2020 jährt sich die Erfindung des Lasers zum 60. Mal. Sei es in der Nachrichtentechnik, in der Medizin oder im Schiffbau: Die Lasertechnologie hat die meisten Branchen der deutschen Volkswirtschaft erfasst. Mit ihrem großen Spektrum an Nutzungsmöglichkeiten geht die Forschung mit und an Lasern weiter, wie verschiedene Projekte aus der Zuse-Gemeinschaft zeigen.

    Dem US-Amerikaner Theodore Harold Maiman gelang am 16. Mai 1960 im kalifornischen Malibu als erstem die Erzeugung eines Laserstrahls, was er knapp drei Monate später, am 7. Juli 1960 bekanntgab. Schon drei Jahre zuvor hatte sich allerdings Gordon Gould die Idee notariell beglaubigen lassen, womit er einen späteren Patentstreit gewann.

    Laser lassen sich nach Wellenlänge ebenso wie nach aufgewandter Energie unterscheiden. Sehr genügsam sind z.B. Laserpointer, deren Strahlenenergie sich im Milliwattbereich bewegt. Anspruchsvoller sind die aus der Medizin bekannten Laser zum Entfernen von Haut-Unreinheiten und Tattoos. Auch Hals-Nasen-Ohren-Ärzte setzen Laser ein, so um Verwachsungen zu beseitigen oder zum Schneiden. Am anderen Ende der Skala beansprucht das Schneiden von Stahlplatten mit Lasern viel Energie. Die Wellenlänge von Lasern reicht von Ultraviolett bis Infrarot.

    Mini-Laser-Chip für Datenübertragung nutzen
    Wie spezielle Infrarot-Laser zur Datenübertragung genutzt werden, erforscht Dr. Anna Lena Giesecke von der Gesellschaft für Angewandte Mikro- und Optoelektronik GmbH (AMO) aus Aachen. “Wir wollen die Datenübertragung komplett optisch regeln. Daher erforschen wir, wie miniaturisierte Laser auf Mikrochips integriert werden können“, erläutert die Physikerin des Aachener Forschungsinstituts, die das von der EU-geförderte Projekt POSEIDON koordiniert. Partner aus drei EU-Ländern sowie Großbritannien arbeiten gemeinsam daran, neue Methoden der Herstellung kompakter Laser auf Mikrochips zu erforschen und sich so für die Datenübertragung vom rein elektronischen Bauteil oder großen externen Lasern zu lösen. In Kombination mit einer integrierten Schaltung ermöglicht der Laser die digitale Datenübertragung. Das Besondere an dem Ansatz: Statt Kabeln nutzen die Forschenden eine optische Wellenleiter-Plattform, welche neu erzeugtes Laserlicht verwendet (s. Grafik). „Durch diese Plattform können wir das Lichtsignal erst im letzten Schritt in ein elektrisches Signal umwandeln“, erläutert Giesecke. Der Ansatz sei daher sehr energieeffizient. „Weil wir mit unseren Lasern mehrere Farben nutzen können, sind viel mehr Daten transportierbar als bisher in Stromkabeln. So können wir mit Hilfe optisch aktiver Materialien einfach gesagt Nullen und Einsen verschiedener Farben gleichzeitig übertragen, quasi eine gelbe Eins und eine grüne Eins etc.“, erläutert Giesecke. Zum Zuge kommen soll die Technik z.B. in der Mobilität, wenn für autonom fahrende, vernetzte Fahrzeuge künftig ein viel größerer Datenaustausch auf der Straße als bisher nötig ist.

    Umdenken in der Automobilbranche
    Wie Laser in der Mobilität innovativ zur Fertigung von E-Motoren zum Zuge kommen, macht man am Bayerischen Laserzentrum (blz) in Erlangen in Form des Laserstrahlschweißens vor. Dafür verwenden die Forschenden in Franken nicht wie bislang üblich infrarotes, sondern grünes oder blaues Laserlicht. Für Werkstoffe wie Stahl ist infrarotes Laserlicht das Mittel der Wahl. Beim Schweißen von Kupfer - das für die E-Motoren besonders wichtig ist - führt infrarotes Licht zu einem instabilen Schweißprozess und damit zu Spritzern und Poren in der Naht, weil die Lichtenergie des Lasers nicht optimal vom Kupfer aufgenommen wird. Eine verminderte elektrische Leitfähigkeit und die Gefahr von Kurzschlüssen können die Folge sein. „Sichtbares Laserlicht löst das Problem. Das grüne oder blaue Laserlicht ist definiert durch seine kürzere Wellenlänge, die von hochreflektiven Werkstoffen wie Kupfer, Gold oder Nickel zu einem höheren Anteil aufgenommen wird“, sagt Kerstin Schaumberger, blz-Leiterin Prozesstechnik Metalle. Erfolgreich eingesetzt wird das grüne und blaue Laserlicht am blz u.a. zum Schweißen sogenannter Hairpins, welche den Strom im Stator, im feststehenden Teil des Motors, übertragen und so für Antrieb sorgen. In der Automobilindustrie stößt die Verwendung der sichtbaren Laserstrahlung laut Schaumberger bereits auf großes Interesse.

    Lasern beim Brückenbau kann Stahlbedarf fast halbieren
    Nicht nur der Fahrzeugbau auch das Verkehrsnetz der Zukunft profitiert vom Schweißen mit Lasern. So hat die Schweißtechnische Lehr- und Versuchsanstalt Mecklenburg-Vorpommern (SLV M-V) in Rostock ein Verfahren entwickelt, mit dem sich der Stahlbedarf der Hauptplatte beim Bau großer Stahlbrücken nahezu halbieren lässt. Durch ein neues Verfahren, das lasergeschweißte Metallverstrebungen in einer mit Fachwerk vergleichbaren Technik einsetzt, reduziert sich die notwendige Stärke bestimmter Bleche von bislang z.B. 12 cm auf etwa 1,2 bis 1,6 cm. „Möglich wird der massiv reduzierte Metallbedarf durch das von uns entwickelte Laser-Schweißverfahren. Dieses Verfahren macht die Schweißnähte zudem durch seine Reproduzierbarkeit viel haltbarer als es in aktuellen Regelwerken vorgesehen ist. Die europäischen Regelwerke sehen solch gute Schweißnähte heute teilweise gar nicht vor und müssen daher angepasst werden“, erklärt SLV-Geschäftsführer Dr. Rigo Peters. Das ist auch der Grund dafür, warum die filigranen lasergeschweißten Brückenteile bislang erst bei Behelfsbrücken, aber noch nicht standardmäßig zum Einsatz kommen. Erfolgreiche angewandte Laserforschung wartet hier darauf die Praxis zu durchdringen. „An der SLV Rostock mit ihren 15 Laseranlagen kommen diese Werkzeuge nicht nur für den Brückenbau, sondern auch in der Forschung für den Schiffbau, den Schienenfahrzeugbau oder in der Automobilindustrie zum Einsatz und sorgen so für Automatisierungslösungen, die uns am Standort Deutschland wettbewerbsfähig halten“, betont Peters.

    Gemeinnützige Forschung für Innovationen
    „Die Laser-Forschung ist ein Beispiel für Innovationen mit Zukunft aus unseren gemeinnützigen Forschungsinstituten, die Deutschland nach Überwinden der Corona-Krise zur Stärkung seiner Wettbewerbskraft dringend braucht“, betont die Geschäftsführerin der Zuse-Gemeinschaft, Dr. Annette Treffkorn.


    Weitere Informationen:

    https://www.zuse-gemeinschaft.de/


    Bilder

    Optisch gepumpter integrierter Laser: Der Scheibenlaser wird von oben durch einen Laser mit Energie versorgt. Das aktive Lasermaterial (rot) wandelt Pumplicht in eine andere Wellenlänge um.
    Optisch gepumpter integrierter Laser: Der Scheibenlaser wird von oben durch einen Laser mit Energie ...
    Bildquelle: AMO
    None

    Dadurch entsteht der Laser bei einer Wellenlänge von 780 Nanometer (nm). Das neu erzeugte Laserlicht kann von der photonischen Wellenleiterplattform (blau) darunter verwendet und dann gemessen werden.
    Dadurch entsteht der Laser bei einer Wellenlänge von 780 Nanometer (nm). Das neu erzeugte Laserlicht ...
    Bildquelle: AMO
    None


    Anhang
    attachment icon 60 Jahre Laser-Technologie: Von Medizin bis Mobilität, von Nano bis Maxi

    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Energie, Informationstechnik, Physik / Astronomie, Verkehr / Transport, Wirtschaft
    überregional
    Forschungs- / Wissenstransfer, Forschungsprojekte
    Deutsch


     

    Optisch gepumpter integrierter Laser: Der Scheibenlaser wird von oben durch einen Laser mit Energie versorgt. Das aktive Lasermaterial (rot) wandelt Pumplicht in eine andere Wellenlänge um.


    Zum Download

    x

    Dadurch entsteht der Laser bei einer Wellenlänge von 780 Nanometer (nm). Das neu erzeugte Laserlicht kann von der photonischen Wellenleiterplattform (blau) darunter verwendet und dann gemessen werden.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).