idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
24.04.2020 14:05

Ein “Korsett” für die Enzymstruktur

Johannes Seiler Dezernat 8 - Hochschulkommunikation
Rheinische Friedrich-Wilhelms-Universität Bonn

    Die Struktur von Enzymen entscheidet darüber, wie sie lebenswichtige Vorgänge wie etwa die Verdauung oder die Immunabwehr steuern. Denn die Eiweißverbindungen sind nicht starr, sondern können über bewegliche „Scharniere“ ihre Form verändern. Welche Form Enzyme einnehmen, kann davon abhängen, ob ihre Struktur im Reagenzglas oder in der lebenden Zelle gemessen wird. Das haben Physikochemiker der Universität Bonn an YopO, einem Enzym des Pesterregers, herausgefunden. Dieses grundlegende Ergebnis, das nun im Journal „Angewandte Chemie“ veröffentlicht wurde, ist potenziell auch für die Wirkstoffforschung interessant.

    Proteine sind in allen lebenden Zellen enthalten und für die Aufrechterhaltung der Körperfunktionen unerlässlich. Sie bestehen hauptsächlich aus Aminosäuren und ermöglichen als Katalysatoren (Enzyme) biochemische Reaktionen, die ansonsten nicht ablaufen würden. Enzyme steuern zum Beispiel die Verdauung und das Immunsystem. „Welche biochemischen Reaktionen ablaufen und wie, hängt von der Struktur der Proteine ab“, sagt Prof. Dr. Olav Schiemann vom Institut für Physikalische und Theoretische Chemie der Universität Bonn. Proteine sind nicht starr, sondern können über bewegliche „Scharniere“ ihre Form verändern. Dieses Wechselspiel zwischen Struktur und Dynamik entscheidet darüber, was passiert. Enzym und umzusetzende Substanz müssen wie Schlüssel und Schloss zusammenpassen, damit ein bestimmter Vorgang katalysiert wird.

    YopO ist in der Membran verankert und dadurch besonders stabil

    Die Wissenschaftler verwendeten für ihre Untersuchung ein Protein von Pesterregern (Yersinien). Diese tricksen das Immunsystem aus, indem sie Proteine wie zum Beispiel YopO (Yersinia outer protein O) in die angreifenden Fresszellen spritzen. YopO bindet an das Aktin der Abwehrzellen, worauf die Immunzellen die Erreger nicht mehr umschließen und verdauen können. „Wir nutzten YopO, weil dieses Enzym medizinisch interessant ist und in einer Membran verankert beziehungsweise immobilisiert werden kann“, erläutert Schiemann. „Letzteres ist eine wichtige Voraussetzung für unsere Messungen bei Raumtemperatur.“

    Nico Fleck aus Schiemanns Forschungsgruppe entwickelte hierfür speziell auf Untersuchungen in der Zelle abgestimmte Spinlabel. Dabei handelt es sich um winzige „Fähnchen“, die Teammitglied Caspar A. Heubach an unterschiedliche Positionen des Proteins anbrachte. Mit der DQC (Double Quantum Coherence)-Methode, die wie ein Lineal auf molekularer Ebene funktioniert, vermaß Tobias Hett aus der Gruppe anschließend die Abstände zwischen den Fähnchen. „Wenn wir die Abstände zwischen den Spinlabeln kennen, können wir darauf schließen, welche Strukturen ein bestimmtes Enzym einnehmen kann“, sagt Hett. Das funktioniert ähnlich einem „Navi“ für Moleküle, weil auch das Orientierungssystem für Fahrzeuge auf Abstandsmessungen beruht.

    Die Forscher führten die DQC-Methode an YopO im Reagenzglas und zum Vergleich in Eizellen des Afrikanischen Krallenfrosches durch, die als Modellorganismen in der Wissenschaft häufig verwendet werden. Für die Messungen in der Zelle wurde das mit den Fähnchen markierte YopO in die Eizellen mit einer Spritze injiziert, „sehr ähnlich wie die Pesterreger es auf molekularer Ebene auch tun“, erklärt Nico Fleck. Dabei zeigte sich, dass YopO in wässriger Lösung im Reagenzglas eine größere Zahl verschiedener Strukturen einnehmen konnte als in den Eizellen. „Im Reagenzglas ist YopO strukturell beweglicher als in lebenden Zellen“, sagt Schiemann. „In den Zellen engen Strukturen wie zum Beispiel Membranen und Interaktionen mit anderen Proteinen die Strukturvielfalt von YopO ein.“

    Grundlegendes Prinzip

    Das ist ein Befund nicht nur für YopO, sondern er gilt als grundlegendes Prinzip: Im Reagenzglas gibt es kein „Korsett“ durch andere Zellstrukturen, die Entfaltungsmöglichkeiten für Enzyme sind größer. Das hat nach den Erkenntnissen der Wissenschaftler Konsequenzen für sämtliche Untersuchungen mit Biomolekülen. „Untersuchungen an den isolierten Biomolekülen sind sicherlich essentiell. Für ein vollständiges Bild sollte man solche Strukturen und Dynamiken aber unter so natürlichen Bedingungen wie möglich untersuchen“, sagt Schiemann. Caspar Heubach ergänzt: „Wenn sich die Aussagen einer Studie auf biomolekulare Vorgänge in Zellen beziehen, sollte man, wie hier, die Struktur und Dynamik der Proteine auch in lebenden Zellen untersuchen.“

    Ergebnisse sind für die Pharmaforschung interessant

    Da Proteine verschiedene Zellvorgänge steuern, stehen sie auch bei der Suche nach neuen Therapien im Fokus. Die Ergebnisse des Forschungsteams der Universität Bonn sind deshalb auch potenziell interessant für die Pharmaforschung, sind die Wissenschaftler überzeugt. „Die Wechselwirkungen in der Zelle sind wichtig für die Struktur und Dynamik der Proteine“, sagt Schiemann. „Es macht deshalb einen Unterschied, wie die Struktur von Enzymen für die Wirkstoffsuche bestimmt wird.“


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Olav Schiemann
    Institut für Physikalische und Theoretische Chemie
    Universität Bonn
    Tel. 0228/732989
    E-Mail: schiemann@pc.uni-bonn.de


    Originalpublikation:

    Nico Fleck, Caspar A. Heubach, Tobias Hett, Florian R. Haege, Pawel P. Bawol, Helmut Baltruschat, Olav Schiemann: SLIM: A short-linked, highly redox-stable trityl label for high sensitivity in cell EPR distance measurements, Angewandte Chemie, DOI: 10.1002/anie.202004452


    Bilder

    Nico Fleck bei der Synthese des Spinlabels (Fähnchens) an einer Rückflussapparatur.
    Nico Fleck bei der Synthese des Spinlabels (Fähnchens) an einer Rückflussapparatur.
    © Foto: Hamed Alaei
    None

    Caspar Heubach beim Pipettieren vor einer Apparatur zur Aufreinigung der markierten Proteine im Labor des Instituts für Physikalische und Theoretische Chemie der Universität Bonn.
    Caspar Heubach beim Pipettieren vor einer Apparatur zur Aufreinigung der markierten Proteine im Labo ...
    © Foto: Hamed Alaei
    None


    Anhang
    attachment icon Der Spinlabel (unten links) wird an das Protein YopO angebracht und das Konstrukt (oben links) in intakten Zellen und im Reagenzglas untersucht. Die Abstände zwischen den Spinlabeln sind rot.

    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Chemie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Nico Fleck bei der Synthese des Spinlabels (Fähnchens) an einer Rückflussapparatur.


    Zum Download

    x

    Caspar Heubach beim Pipettieren vor einer Apparatur zur Aufreinigung der markierten Proteine im Labor des Instituts für Physikalische und Theoretische Chemie der Universität Bonn.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).