idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Thema Corona

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
29.04.2020 11:36

Nano-Optomechanik mit einzelnen Elektronen

Christina Glaser Referat II/2 - Media Relations & Communications
Universität Regensburg

    Regensburger Physiker weisen einen vielversprechenden Weg auf, um verschiedenste Quantentechnologien auf einem Chip zu kombinieren

    Optomechanik untersucht die Wechselwirkung zwischen mechanischen Elementen und elektromagnetischen Feldern. Physikern der Universität Regensburg ist es gelungen, die Bewegung einer Kohlenstoff-Nanoröhre, also eines einzelnen Makromoleküls, an einen Mikrowellenresonator zu koppeln – in einem neuartigen, miniaturisierten optomechanischen System. Dabei nützt die Arbeitsgruppe von PD Dr. Andreas K. Hüttel die Ladungsquantisierung, d.h., daß Strom durch einzelne tunnelnde Elektronen getragen wird, als Verstärkereffekt aus. Die Ergebnisse sind in Nature Communications erschienen; sie weisen einen vielversprechenden neuen Weg auf, wie man verschiedenste Quantentechnologien auf einem Chip kombinieren kann.

    Die Schwingungen eines Makromoleküls, wie einer Kohlenstoff-Nanoröhre, an ein Mikrowellenfeld zu koppeln, ist normalerweise schwierig. Warum? Weil typische elektromagnetische Wellenlängen, die für Experimente in der Quanteninformationsverarbeitung oder Festkörper-Quantenelektrodynamik verwendet werden, im Millimeterbereich liegen. Ein typisches Nanoröhren-Bauelement, als mechanischer Resonator, aber auch als Falle für einzelne Elektronen, ist jedoch weniger als einen Mikrometer lang, mit mechanischen Auslenkungen im Nanometerbereich. Diese weit unterschiedlichen Größenordnungen führen dazu, daß die Nanoröhre das elektromagnetische Feld kaum beeinflußt; die Kopplung, die hier erwartet wird, ist minimal.

    Erreichen und Kontrollieren der optomechanischen Kopplung einer Nanoröhre, ohne sie dabei zu großen, unkontrollierten Schwingungsamplituden anzuregen, ist dennoch aus vielerlei Gründen interessant. Eine Kohlenstoff-Nanoröhre ist ein fast perfekter Saitenresonator, der mechanische Energie lange speichern kann; ihre Schwingungen könnten dazu verwendet werden, Information zwischen unterschiedlichen Quantensystemen zu transferieren und zu übersetzen. Und sowohl einzelne Elektronen im Festkörper als auch supraleitende Mikrowellenschaltkreise zählen zu den weltweit favorisierten Quantencomputer-Architekturen.

    Das Regensburger Experiment, kürzlich als Open-Access-Artikel veröffentlicht, zeigt, daß die Wechselwirkung zwischen mechanischer Schwingung und elektromagnetischem Feld um einen Faktor 10000 verglichen mit einfachen geometrischen Modellen verstärkt werden kann. Dazu wird die sogenannte Quantenkapazität verwendet: Elektrischer Strom wird durch einzelne Elektronen getragen, was heißt, daß ein sehr kleiner Kondensator – wie eine Nanoröhre – nicht kontinuierlich, sondern in Stufen aufgeladen wird. Durch die richtige Wahl des Arbeitspunkts auf der Stufenfunktion kann die optomechanische Kopplung kontrolliert und schnell geschaltet werden.

    „Wir haben jetzt ein sogenanntes dispersiv gekoppeltes optomechanisches System – neuartig und spannend durch die Einzelelektroneneffekte, aber andererseits auch gut erforscht, da weltweit sehr viele theoretische und experimentelle Arbeiten zu größeren (bis hin zu makroskopischen) optomechanischen Systemen existieren“, so Dr. Hüttel, momentan als Gastprofessor an der Aalto Universität, Espoo, Finnland. „Die Kopplung kann zum Dämpfen der Schwingung verwendet werden, zu hochempfindlicher Bewegungsdetektion, zum Verstärken von kleinen Signalen, oder sogar zur Synthese beliebiger Quantenzustände. Unsere Messungen zeigen, daß die quantenmechanische Kontrolle der Nanoröhren-Schwingung in absehbarer Zukunft erreichbar ist. Damit werden Kohlenstoff-Nanoröhren auf eine weitere Weise interessant, als ‚Schaltzentrale‘, die die Kombination verschiedenster Quanteneffekte ermöglicht.“


    Wissenschaftliche Ansprechpartner:

    PD Dr. Andreas K. Hüttel
    Institute for Experimental and Applied Physics
    University of Regensburg
    andreas.huettel@ur.de


    Originalpublikation:

    S. Blien, P. Steger, N. Hüttner, R. Graaf, und A. K. Hüttel “Quantum capacitance mediated carbon nanotube optomechanics“ Nature Communications (2020).
    DOI: https://doi.org/10.1038/s41467-020-15433-3


    Bilder

    Perspektivische Zeichnung
    Perspektivische Zeichnung
    Grafik: Andreas Hüttel
    None

    Mikroskopbild mit Skala
    Mikroskopbild mit Skala
    Grafik: Niklas Hüttner, Stefan Blien and Andreas Hüttel
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Perspektivische Zeichnung


    Zum Download

    x

    Mikroskopbild mit Skala


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).