idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
08.05.2020 20:00

IST Austria Wissenschafter demonstrieren Quantenradar Prototyp

Patrick Müller Communications and Events
Institute of Science and Technology Austria

    Physiker des Institute of Science and Technology Austria (IST Austria) gelang es, einen Radarprototypen zu entwickeln, der sich zur Objekterkennung des Phänomens der Quantenverschränkung bedient. Diese erfolgreiche Anwendung von Quantenmechanik in unserer Alltagsumgebung könnte die biomedizinische und sicherheitstechnische Industrie maßgeblich beeinflussen. Die Forschungsergebnisse wurden in der Zeitschrift Science Advances veröffentlicht.

    Quantenverschränkung ist ein physikalisches Phänomen, bei dem zwei Teilchen miteinander verbunden bleiben und physikalische Eigenschaften teilen, unabhängig davon, wie weit sie voneinander entfernt sind. Nun haben Wissenschafter der Forschungsgruppe um Professor Johannes Fink am Institute of Science and Technology Austria (IST Austria) in Klosterneuburg gemeinsam mit Stefano Pirandola vom Massachusetts Institute of Technology (MIT), USA und der University of York, Großbritannien, sowie David Vitali von der Universität Camerino, Italien, eine neuartige Detektionstechnologie namens Mikrowellen-Quantenillumination entwickelt. Der Prototyp, ein sogenanntes Quantenradar, ist in der Lage, Objekte in verrauschten thermischen Umgebungen zu erkennen, in denen klassische Radarsysteme oft versagen. Die neue Technologie, die auf der Verwendung verschränkter Mikrowellenphotonen basiert, könnte potenziell in biomedizinischen Niedrigenergie-Bildgebungsverfahren und Sicherheitsscannern zur Anwendung kommen.
    Quantenverschränkung als neue Detektionsmethode
    Im Prinzip ist die Funktionsweise des Systems relativ einfach: Anstatt konventionelle Mikrowellen zu verwenden, verschränken die Forscher zwei Gruppen von Photonen, die als „Signal“ und „Idler“ bezeichnet werden. Die Signal-Photonen werden in Richtung des zu detektierenden Objekts ausgesandt, während die Idler-Photonen relativ isoliert, frei von Störungen und Rauschen gemessen werden. Wird das Signal zurückreflektiert, geht die Verschränkung zwischen Signal- und Idler-Photonen zum Großteil verloren, nur einige wenige Korrelationen bleiben bestehen. Diese erzeugen aber eine Signatur oder ein Muster bei der Rekombination der beiden Signale, das die Existenz oder Abwesenheit des Zielobjekts beschreibt – unabhängig vom Rauschen in der Umgebung.
    „Was wir gezeigt haben, ist der praktische Nachweis eines theoretischen Konzepts für Mikrowellen-Quantenradare“, so Erstautor und zum Zeitpunkt der Forschungen Postdoc in der Fink-Gruppe Shabir Barzanjeh, dessen bisherige Forschung dazu beigetragen hat, den theoretischen Rahmen um quantenbasierte Radartechnologie zu entwickeln. „Mithilfe von Quantenverschränkung, die bei einigen Tausendstel Grad über dem absoluten Nullpunkt (-273,14 °C) erzeugt wurde, konnten wir Objekte mit sehr geringer Reflektivität bei Raumtemperatur detektieren.“
    Quantenradar klassischen Radaren bei niedriger Leistung überlegen
    Obwohl die Verschränkung von Quantenteilchen prinzipiell sehr instabil ist, hat das neu entwickelte Gerät gegenüber herkömmlichen Radaren einige grundlegende Vorteile. So haben klassische Radarsysteme bei sehr kleinen Signalleistungen typischerweise eine geringe Empfindlichkeit, da sie Schwierigkeiten haben, die vom Objekt reflektierte Strahlung von natürlich auftretendem Hintergrundstrahlungsrauschen zu unterscheiden. Mit der Quantenillumination kann dieses Problem umgangen werden, da die Ähnlichkeiten zwischen den Signal- und Idler-Photonen die Unterscheidung der Signal-Photonen (die vom Zielobjekt empfangen werden) vom Umgebungsrauschen erleichtern.
    Barzanjeh, der mittlerweile Assistenzprofessor an der University of Calgary ist: „Die zentrale Aussage unserer Forschung ist, dass Quantenradare und Mikrowellen Quantenillumination nicht nur in der Theorie existieren, sondern auch in der Praxis möglich sind. Im Vergleich zu klassischen kohärenten Detektoren sehen wir unter denselben Bedingungen und bei sehr geringer Signalstärke, dass die quantenverstärkte Detektion überlegen sein kann.“
    Wichtiger Meilenstein zur Weiterentwicklung der 80-jährigen Radartechnologie
    Grundlagenforschung war stets einer der wichtigsten Treiber für Innovation, Paradigmenwechsel und technologischen Durchbruch. Die neuesten Forschungsergebnisse der Fink-Gruppe gelten zwar lediglich als „Proof of Concept“, also als praktischer Nachweis eines theoretischen Konzepts, jedoch konnten Barzanjeh et al. eine neue Detektionsmethode demonstrieren, die in einigen Fällen dem klassischen Radar überlegen sein kann.
    „Im Laufe der Geschichte waren Proofs of Concept wie unseres oft wichtige Meilensteine auf dem Weg zu zukünftigen technologischen Entwicklungen. Wir sind gespannt auf die Auswirkungen unserer Forschung, insbesondere für Mikrowellensensoren mit kurzer Reichweite“, so Barzanjeh.
    Letztautor und Gruppenleiter Johannes Fink ergänzt: „Dieses wissenschaftliche Ergebnis war nur möglich durch die enge Zusammenarbeit von theoretischen und experimentelle Physikern die neugierig sind wie man Quantenmechanik nutzen kann um klassische Schranken in der Sensorik zu durchbrechen. Um einen Nutzen aus unserer Forschung zu ziehen, brauchen wir darüber hinaus aber auch die Unterstützung erfahrener Elektroingenieure denn es gibt noch viel zu tun bevor das Konzept in der Praxis angewendet werden kann.“

    Über die Fink-Gruppe am IST Austria
    Professor Johannes Fink leitet am IST Austria eine Forschungsgruppe an der Schnittstelle zwischen Quantenoptik und mesoskopischer Festkörperphysik. Das Team untersucht Quantenphysik in elektrischen, mechanischen und optischen chip-basierten Bauteilen mit dem Ziel, die Quantentechnologie für Simulation, Kommunikation, Metrologie und Sensorik weiterzuentwickeln und zu integrieren. Weitere Informationen über die Gruppe finden Sie hier.


    Originalpublikation:

    S. Barzanjeh, S. Pirandola, D. Vitali & J. M. Fink. 2019. Science Advances. DOI: 10.1126/sciadv.abb0451


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).