idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.05.2020 17:00

Lipid Metabolism Controls Brain Development

Kurt Bodenmüller Kommunikation
Universität Zürich

    A lipid metabolism enzyme controls brain stem cell activity and lifelong brain development. If the enzyme does not work correctly, it causes learning and memory deficits in humans and mice, as researchers at the University of Zurich have discovered. Regulating stem cell activity via lipid metabolism could lead to new treatments for brain diseases.

    Neural stem cells are not only responsible for early brain development – they remain active for an entire lifetime. They divide and continually generate new nerve cells and enable the brain to constantly adapt to new demands. Various genetic mutations impede neural stem cell activity and thus lead to learning and memory deficits in the people affected. Very little has hitherto been known about the mechanisms responsible for this.

    Enzyme regulates brain stem cell activity

    An international research team led by Sebastian Jessberger, professor at the Brain Research Institute at the University of Zurich (UZH), is now demonstrating for the first time that a lipid metabolism enzyme regulates the lifelong activity of brain stem cells, in a study published in Cell Stem Cell. This enzyme – known as fatty acid synthase (FASN) – is responsible for the formation of fatty acids. A specific mutation in the enzyme’s genetic information causes cognitive deficits in affected patients.

    Headed by postdoc Megan Bowers and PhD candidates Tong Liang and Daniel Gonzalez-Bohorquez, the researchers studied the genetic change of FASN in the mouse model as well as in human cerebral organoids – organ-like cell cultures of the brain that are formed from human embryonic stem cells. “This approach allows us to analyze the effects of the defective enzyme in the brains of adult mice and during early human brain development in parallel,” explains Jessberger. The research involved altering the genetic information of both the mice and the human organoids experimentally so that the lipid metabolism enzyme exhibited the exact mutation that had been found in people with cognitive deficits.

    Diminished stem cell activity reduces cognitive performance

    The FASN mutation led to reduced division of stem cells, which constantly generate new nerve cells, both in mice and in human tissue. The hyperactivity of the mutated enzyme is responsible for this, since fats accumulate inside the cell, putting the stem cells under stress and reducing their ability to divide. Similar to cognitive deficits found in affected people, mice also displayed learning and memory deficits due to the mutation. “Our results provide evidence of the functional correlation between lipid metabolism, stem cell activity and cognitive performance,” says Jessberger.

    The mechanism now identified shows how lipid metabolism regulates neuronal stem cells activity and thus influences brain development. “The new discoveries regarding learning and memory deficits in people were only made possible by linking our research on animal models and in human cells,” stresses Jessberger. According to the research scientists, their methodology provides a “blueprint” for conducting detailed research into the activity of brain stem cells and their role in cognitive processes, and therefore for achieving a better understanding of poorly understood diseases.

    Stem cells as a therapeutic objective for brain diseases

    “In addition, we hope that it will be possible to control stem cell activity therapeutically to use them for brain repair – for example for the future treatment of cognitive disorders or in association with diseases that involve the death of nerve cells, such as Parkinson's disease or Alzheimer's disease,” says Sebastian Jessberger.

    Funding
    The research work was supported by an SNSF Consolidator Grant from the Swiss National Science Foundation, the European Research Council, the Dr. Eric Slack-Gyr Foundation, the Betty & David Koetser Foundation, the Neuroscience Center Zurich and a research grant from the University of Zurich.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Sebastian Jessberger
    Brain Research Institute
    University of Zurich
    Phone +41 44 635 33 70
    E-mail: jessberger@hifo.uzh.ch


    Originalpublikation:

    Megan Bowers, Tong Liang, Daniel Gonzalez-Bohorquez, Sara Zocher, Baptiste N. Jaeger, Werner J. Kovacs, Clemens Röhrl, Kaitlyn M. L. Cramb, Jochen Winterer, Merit Kruse, Slavica Dimitrieva, Rupert W. Overall, Thomas Wegleiter, Hossein Najmabadi, Clay F. Semenkovich, Gerd Kempermann, Csaba Földy, Sebastian Jessberger. FASN-dependent lipid metabolism links neurogenic stem/progenitor cell activity to learning and memory deficits. Cell Stem Cell. 7 May 2020. DOI: 10.1016/j.stem.2020.04.002


    Bilder

    Cerebral organoids produced by human embryonic stem cells are organ-like cell cultures of the brain. They consist of neural stem cells (green), progenitor cells (red) and nerve cells (white).
    Cerebral organoids produced by human embryonic stem cells are organ-like cell cultures of the brain. ...
    Daniel Gonzalez-Bohorquez, UZH
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Cerebral organoids produced by human embryonic stem cells are organ-like cell cultures of the brain. They consist of neural stem cells (green), progenitor cells (red) and nerve cells (white).


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).