idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
09.07.2020 15:03

Selbstadaptive Systeme: KI übernimmt Arbeit von Software-Ingenieuren

Ulrike Bohnsack Ressort Presse - Stabsstelle des Rektorats
Universität Duisburg-Essen

    Für selbstadaptive Software gibt es heute unzählige Anwendungsmöglichkeiten. Doch die Entwicklung der Systeme stellt Software-Ingenieure vor neue Herausforderungen. Wissenschaftler vom Softwaretechnik-Institut paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der Künstlichen Intelligenz (KI) erzielt, die den Entwicklungsprozess selbstadaptiver Systeme automatisieren.

    Wir leben in einer schnelllebigen, vernetzten Welt. In dieser wächst der Bedarf an selbstadaptiver Software, also Software, die in der Lage ist, sich selbstständig an wechselnde Umgebungssituationen anzupassen. Beispiele sind schwankende Übertragungsbandbreiten, eine wechselnde Anzahl von Nutzern oder sich ändernde Benutzerpräferenzen.

    Eine wesentliche Aufgabe bei der Entwicklung selbstadaptiver Software ist es vorzugeben, wann und wie eine Anpassung erfolgen soll. Das ist jedoch schwierig, weil die Ingenieure zum Zeitpunkt der Entwicklung meist nicht alle möglichen Umgebungssituationen der Software vorhersehen können. Dieser Herausforderung begegnet das paluno-Team mit Online Reinforcement Learning, einem Verfahren der Künstlichen Intelligenz.

    Die Idee dahinter: Die Software lernt selbst, welche Anpassung in welcher Situation die beste ist, indem sie Feedback zur Laufzeit sammelt und auswertet. Gute Anpassungen führen zu positivem Feedback, schlechte Anpassungen zu einem negativen. So lernt die Software durch Ausprobieren, möglichst gute Rückmeldungen zu sammeln. Damit übernimmt die Künstliche Intelligenz die bisherige manuelle Tätigkeit der Software-Ingenieure: festlegen, wann und wie eine Anpassung erfolgen soll.

    „Bisherige Methoden des Online Reinforcement Learning haben jedoch noch einen Haken“, sagt Dr. Andreas Metzger, Leiter des Bereichs Adaptive Systeme bei paluno. „Die so genannte Explorationsrate muss manuell feinjustiert werden. Das ist die Wahrscheinlichkeit, dass die Software eine neue Anpassung ausprobiert, anstatt sich auf bekannte, sichere Anpassungen zu beschränken.“

    Weil das auf Kosten der Automatisierbarkeit geht, setzt das paluno-Team einen neuartigen Lernalgorithmus ein: Dieser wird Policy-based Reinforcement Learning genannt und kommt ohne eine Feinjustierung der Explorationsrate aus. Erste Tests bei selbstadaptiven Systemen für das Geschäftsprozessmanagement und für Web-Anwendungen waren erfolgreich. Ihre Erkenntnisse wollen die Wissenschaftler nun auch für die Entwicklung von selbstadaptiven Transportmanagement-Systemen und Smart-Home-Systemen anwenden.

    Redaktion: Birgit Kremer, paluno, Tel. 0201/18 3-4655, birgit.kremer@paluno.uni-due.de


    Wissenschaftliche Ansprechpartner:

    Dr. Andreas Metzger, paluno, Tel. 0201/18 3-4650, andreas.metzger@paluno.uni-due.de


    Weitere Informationen:

    http://Weitere Informationen:
    https://paluno.uni-due.de/aktuelles/news-insights/artikel/kuenstliche-intelligen...


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Informationstechnik
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).