idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
22.07.2020 11:53

Optimizing neural networks on a brain-inspired computer

Carolin Hoffrogge Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation

    Neural networks in both biological settings and artificial intelligence distribute computation across their neurons to solve complex tasks. New research now shows how so-called “critical states” can be used to optimize artificial neural networks running on brain-inspired neuromorphic hardware. The study was carried out by scientists from Heidelberg University working within the Human Brain Project, and the Max-Planck-Institute for Dynamics and Self-Organization (MPIDS). The results have been published in Nature Communications.

    Many computational properties are maximized when the dynamics of a network are at a “critical point”, a state where systems can quickly change their overall characteristics in fundamental ways, transitioning e.g. between order and chaos or stability and instability. Therefore, the critical state is widely assumed to be optimal for any computation in recurrent neural networks, which are used in many AI applications.

    Researchers from the HBP partner Heidelberg University and the Max-Planck-Institute for Dynamics and Self-Organization challenged this assumption by testing the performance of a spiking recurrent neural network on a set of tasks with varying complexity at – and away from critical dynamics. They instantiated the network on a prototype of the analog neuromorphic BrainScaleS-2 system. BrainScaleS is a state-of-the-art brain-inspired computing system with synaptic plasticity implemented directly on the chip. It is one of two neuromorphic systems currently under development within the European Human Brain Project.

    First, the researchers showed that the distance to criticality can be easily adjusted in the chip by changing the input strength, and then demonstrated a clear relation between criticality and task-performance. The assumption that criticality is beneficial for every task was not confirmed: whereas the information-theoretic measures all showed that network capacity was maximal at criticality, only the complex, memory intensive tasks profited from it, while simple tasks actually suffered. The study thus provides a more precise understanding of how the collective network state should be tuned to different task requirements for optimal performance.

    Mechanistically, the optimal working point for each task can be set very easily under homeostatic plasticity by adapting the mean input strength. The theory behind this mechanism was developed very recently at the Max Planck Institute. “Putting it to work on neuromorphic hardware shows that these plasticity rules are very capable in tuning network dynamics to varying distances from criticality”, says senior author Viola Priesemann, group leader at MPIDS. Thereby tasks of varying complexity can be solved optimally within that space.

    The finding may also explain why biological neural networks operate not necessarily at criticality, but in the dynamically rich vicinity of a critical point, where they can tune their computation properties to task requirements. Furthermore, it establishes neuromorphic hardware as a fast and scalable avenue to explore the impact of biological plasticity rules on neural computation and network dynamics.

    “As a next step, we now study and characterize the impact of the spiking network’s working point on classifying artificial and real-world spoken words”, says first author Benjamin Cramer of Heidelberg University.


    Originalpublikation:

    Cramer, B., Stöckel, D., Kreft, M., Wibral, M., Schemmel, J., Meier, K., & Priesemann, V.
    Control of criticality and computation in spiking neuromorphic networks with plasticity
    Nature Communications, 11(1) (2020) 2853, DOI 10.1038/s41467-020-16548-3


    Bilder

    The experiment was performed on a prototype of the BrainScales-2 chip, Schematic representation of a neural network and Results for simple and complex tasks (from left to right)
    The experiment was performed on a prototype of the BrainScales-2 chip, Schematic representation of a ...

    © Heidelberg University and MPIDS


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Medizin, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    The experiment was performed on a prototype of the BrainScales-2 chip, Schematic representation of a neural network and Results for simple and complex tasks (from left to right)


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).