idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
03.08.2020 17:10

Künstliche Intelligenz & Einzelzellgenomik: Neue Software sagt das Schicksal einer Zelle vorher

Verena Schulz Kommunikation
Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

    Die Erforschung der Zelldynamik ermöglicht einen tieferen Einblick in die Entstehung und Entwicklung von Zellen sowie ein besseres Verständnis von Krankheitsverläufen. Wissenschaftler des Helmholtz Zentrums München und der Technischen Universität München (TUM) haben „scVelo“ entwickelt – eine auf maschinellem Lernen basierende Methode und Open-Source-Software, welche die Dynamik der Genaktivität in einzelnen Zellen prognostizieren kann. Damit können die Forscher den künftigen Zustand einzelner Zellen vorhersagen.

    Herkömmliche Verfahren für die Einzelzellsequenzierung erlauben es, Erkenntnisse über Unterschiede und Funktionen auf zellulärer Ebene zu gewinnen - allerdings geht dies nur als statische Momentaufnahme und nicht als Zeitraffer. Diese Einschränkung macht es schwierig, Rückschlüsse auf die Zelldynamik zu ziehen. Mit der kürzlich eingeführten Methode „RNA Velocity" kann der Entwicklungsverlauf einer einzelnen Zelle rechnerisch rekonstruiert werden (auf Grundlage des Verhältnisses von gespleißten und ungespleißten Transkripten). Diese Methode war allerdings bislang nur auf statische Zellpopulationen anwendbar. Die Forscher suchten daher nach Möglichkeiten, das Konzept von „RNA Velocity" methodisch zu erweitern, sodass es auch auf dynamische Populationen anwendbar ist. Solche Zellpopulationen sind für das Verständnis von Zellentwicklung und Reaktionen auf Krankheiten von entscheidender Bedeutung.

    „Single-cell Velocity“
    Ein Team des Instituts für Computational Biology am Helmholtz Zentrum München und der Fakultät für Mathematik der TUM entwickelten „scVelo“ (Single-cell Velocity). Die Methode ermittelt die RNA-Geschwindigkeit mit einem Modell basierend auf künstlicher Intelligenz (KI). Dabei lernt die KI die gesamte Transkriptionsdynamik für jedes Gen. Dies ermöglicht es den Forschern, das Konzept von RNA Velocity auf eine Vielzahl biologischer Systeme einschließlich dynamischer Populationen zu übertragen.

    „Wir haben scVelo genutzt, um die Zellentwicklungen in der endokrinen Bauchspeicheldrüse und im Hippocampus zu entschlüsseln. Außerdem haben wir dynamische Prozesse bei der Lungenregeneration untersucht – und das ist erst der Anfang“, sagt Volker Bergen, Entwickler von scVelo und Erstautor der dazugehörigen Veröffentlichung in Nature Biotechnology.

    Mit scVelo können die Forscher ohne aufwändige Experimente Reaktionsraten ermitteln und damit herausfinden, in welcher Geschwindigkeit die RNA produziert und gespleißt wird, und wie schnell sie schließlich zerfällt. Diese Raten können helfen, die Zellidentität und phänotypische Unterschiede besser zu verstehen. Durch die Einführung einer sogenannten Latenzzeit können sie die Zellentwicklung vollständig rekonstruieren und jede Zelle entlang ihres Entwicklungsverlaufs positionieren. Dadurch werden insbesondere die Entscheidungsprozesse einer Zelle besser verständlich. Darüber hinaus deckt scVelo regulatorische Veränderungen auf und identifiziert die Gene, welche für diese Veränderungen jeweils verantwortlich sein könnten. So können die Forscher nicht nur verstehen wie, sondern auch warum sich Zellen auf diese oder jene Weise entwickeln.

    Personalisierte Behandlungsmethoden
    KI-basierte Lösungen wie scVelo könnten bei der Entwicklung von personalisierten Behandlungsmethoden helfen. Der Sprung von statischen Momentaufnahmen zu volldynamischen Systemen erlaubt es den Forschern, von rein deskriptiven zu prädiktiven Modellen überzugehen. In Zukunft könnten so Krankheitsverläufe, beispielsweise die Tumorbildung, besser verstanden oder auch die Zellantwort als Reaktion auf eine Krebsbehandlung entschlüsselt werden.

    „scVelo wurde seit der Veröffentlichung im letzten Jahr knapp 60.000 Mal heruntergeladen. Die Software ist zu einem populären und wichtigen Werkzeug für die Entwicklung kinetischer Modelle für die Einzelzell-Transkriptomik geworden“, ergänzt Prof. Fabian Theis, der die Studie konzipierte und als Direktor am Institut of Computational Biology am Helmholtz Zentrum München und als Lehrstuhlinhaber für Mathematische Modellierung biologischer Systeme an der TUM tätig ist.

    Helmholtz Zentrum München
    Das Helmholtz Zentrum München verfolgt als Forschungszentrum die Mission, personalisierte medizinische Lösungen zur Prävention und Therapie von umweltbedingten Krankheiten für eine gesündere Gesellschaft in einer sich schnell verändernden Welt zu entwickeln. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.500 Mitarbeitende und ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands mit mehr als 40.000 Mitarbeitenden in 19 Forschungszentren.


    Wissenschaftliche Ansprechpartner:

    Volker Bergen
    Helmholtz Zentrum München
    Institut für Computational Biology
    Email: volker.bergen@helmholtz-muenchen.de


    Originalpublikation:

    Bergen et al., 2020: Generalizing RNA velocity to transient cell states through dynamical modeling


    Weitere Informationen:

    http://www.scvelo.org/


    Bilder

    scVelo erlaubt einen detaillierten Einblick in die Entwicklungsprozesse der Bauchspeicheldrüse.
    scVelo erlaubt einen detaillierten Einblick in die Entwicklungsprozesse der Bauchspeicheldrüse.

    Helmholtz Zentrum München


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Medizin
    überregional
    Forschungsergebnisse
    Deutsch


     

    scVelo erlaubt einen detaillierten Einblick in die Entwicklungsprozesse der Bauchspeicheldrüse.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).