idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
18.08.2020 10:19

Vom Treibhausgas zu wertvollen Grundchemikalien - Neues Verständnis der elektrokatalytischen Umsetzung von CO2

Mareike Hochschild Stabsstelle Kommunikation und Medien
Technische Universität Darmstadt

    Darmstadt, 18. August 2020. Für eine nachhaltige Wirtschaft der Zukunft ist die Umwandlung von Kohlendioxid in Kohlenwasserstoffe und andere Grundchemikalien von Bedeutung. Forschende der TU Darmstadt und des Helmholtz-Instituts Erlangen-Nürnberg für Erneuerbare Energien haben jetzt wesentliche Schritte der elektrochemischen Kohlendioxid-Umwandlung entschlüsselt. Sie berichten darüber in der renommierten Fachzeitschrift Angewandte Chemie International Edition.

    Auf dem Weg in eine nachhaltige Wirtschaft spielt die Umwandlung von Kohlendioxid in Kohlenwasserstoffe und andere Grundchemikalien eine wichtige Rolle. Ein zukunftsträchtiges Verfahren ist die elektrochemische Umsetzung des aus der Luft oder aus industriellen Abfall- und Nebenströmen isolierten Gases an Kupferkatalysatoren. Als Energiequelle kann Solar- oder Windstrom dienen. Das bietet zugleich die Möglichkeit, überschüssige erneuerbare Energie in Form von chemischer Energie zu speichern. Allerdings ist die elektrokatalytische Umsetzung von Kohlendioxid ein komplexer Prozess, dessen einzelne Schritte noch nicht aufgeklärt sind. „Ein tieferer Einblick in die Reaktionsmechanismen ist unbedingt erforderlich, um die Umsetzung des Kohlendioxids in Richtung der gewünschten Zielprodukte zu lenken“, betont Professor Bastian J. M. Etzold vom Fachbereich Chemie der TU Darmstadt.

    Zusammen mit der Gruppe von Professor Jan P. Hoffmann (Fachbereich Material- und Geowissenschaften der TU Darmstadt) und Forschern vom Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien haben Etzold und seine Mitarbeiter jetzt wesentliche Schritte der elektrochemischen Kohlendioxid-Umwandlung entschlüsselt. Dabei verwendeten sie einen Trick, wie sie jetzt in der renommierten Fachzeitschrift Angewandte Chemie International Edition berichten: Auf dem Kupferkatalysator brachten die Wissenschaftler eine ionische Flüssigkeit auf, die als chemische Falle fungierte. So lassen sich Zwischenprodukte der elektrochemischen Umsetzung abfangen und bestimmte Reaktionsschritte unterbinden oder verlangsamen. „Wir konnten die daraus resultierende Veränderung im Produktspektrum nutzen, um das komplexe Reaktionsnetzwerk zu vereinfachen und Schlüsselschritte zu identifizieren“, erklärt Professor Etzold. Unter anderem konnten die Wissenschaftler neue Erkenntnisse zur Umsetzung von Kohlendioxid zu den Alkoholen Ethanol und Propanol sowie zu den Kohlenwasserstoffen Ethan und Ethen ableiten.

    Die Strategie orientiert sich an einem Konzept namens SCILL (solid catalyst with ionic liquid layer), das Etzold erstmals vor 13 Jahren publizierte. SCILL diente bislang beispielsweise der Modifikation von Platinkatalysatoren für Brennstoffzellen. Das Aufbringen der ionischen Flüssigkeit auf dem Katalysator sei eine einfach anwendbare Methode, unterstreicht Etzold: „Das Verfahren kann in zahlreichen Laboren und spezialisierten Versuchsständen, auch unter technisch relevanten Bedingungen, verwendet werden.“ Dank der Vielfalt an ionischen Flüssigkeiten eigne sich der Ansatz auch für die Untersuchung von anderen elektrochemischen Reaktionen sowie generell zur Steuerung des Produktspektrums in der Elektrokatalyse.

    Die Originalpublikation:
    Probing CO2 Reduction Pathways in Copper Catalysts using Ionic Liquid as a Chemical Trapping Agent, G.-R. Zhang, S.-D. Straub, L.-L. Shen, Y. Hermans, P. Schmatz, A.M. Reichert, J.P. Hofmann, I. Katsounaros and B.J.M. Etzold, Angew. Chem. Int. Ed., DOI: 10.1002/anie.202009498
    https://onlinelibrary.wiley.com/doi/10.1002/anie.202009498

    Über die TU Darmstadt
    Die TU Darmstadt zählt zu den führenden Technischen Universitäten in Deutschland. Sie verbindet vielfältige Wissenschaftskulturen zu einem charakteristischen Profil. Ingenieur- und Naturwissenschaften bilden den Schwerpunkt und kooperieren eng mit prägnanten Geistes- und Sozialwissenschaften. Weltweit stehen wir für herausragende Forschung in unseren hoch relevanten und fokussierten Profilbereichen: Cybersecurity, Internet und Digitalisierung, Kernphysik, Energiesysteme, Strömungsdynamik und Wärme- und Stofftransport, Neue Materialien für Produktinnovationen. Wir entwickeln unser Portfolio in Forschung und Lehre, Innovation und Transfer dynamisch, um der Gesellschaft kontinuierlich wichtige Zukunftschancen zu eröffnen. Daran arbeiten unsere 312 Professorinnen und Professoren, rund 4.500 wissenschaftlichen und administrativ-technischen Mitarbeiterinnen und Mitarbeiter sowie rund 25.200 Studierenden. Mit der Goethe-Universität Frankfurt und der Johannes Gutenberg-Universität Mainz bildet die TU Darmstadt die strategische Allianz der Rhein-Main-Universitäten.
    www.tu-darmstadt.de

    MI-Nr. 48/2020 Uta Neubauer/sip


    Originalpublikation:

    https://onlinelibrary.wiley.com/doi/10.1002/anie.202009498


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie, Energie, Geowissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).