idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.09.2020 10:06

Feeding off fusion – the immortalization of tumor cells

Mag. Evelyn Devuyst IMBA Communications
IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

    Despite all recent progress, cancer remains one of the deadliest human diseases. In a new publication that appeared in the journal Cell, researchers from Jürgen Knoblich's lab at IMBA – Institute of Molecular Biotechnology of the Austrian Academy of Sciences – found a very surprising and unexpected connection between the formation of tumors and mitochondria, the power house of the cells, that allows neural stem cells that normally build our brain to become deadly tumor cells.

    Worldwide, cancer is the second leading cause of death – in 2018 alone, it claimed approximately 9.6 million lives, or one in six deaths. The development of cancer is incredibly complex and is controlled by an interplay of various factors – only recently, it became clear that the majority of human cancers such as cervical, gastrointestinal and breast among others, originate from adult stem cells becoming deregulated. These adult stem cells are present in many of our organs, where they provide a constant supply of cells to replace old and dead cells. Identifying the mechanisms of how these developmentally tightly regulated stem cells break free from their regulations is an important topic within the scientific community, including the Knoblich lab at IMBA.
    One key step in tumorigenesis are the mechanics driving tumor cell initiation, which trigger their fate in becoming tumorigenic. They have, thus far, mainly been studied at gene regulation levels, by researching tumor suppressor genes MYC, p53 or KRAS. Metabolic changes within tumor cells are a well-known characteristic, but whether these are a consequence or the cause of tumor cell immortalization is still not known, and thus the focus of the most recent publication from Knoblich’s team.

    The researchers chose the fruit fly Drosophila melanogaster as tumor model – this established yet somewhat unconventional model organism boasts a long history in tumor studies, with discoveries in mutations of tumor suppressor genes dating back to the 1970s. Learnings from this simple model organism can then be used as a powerful tool as basis for further studies on human genes. In Drosophila, the scientists visualized the exact timepoint when tumor initiating cells became immortal and manipulated the process genetically – a feat which is not readily accomplished in mammalian tumors, due to their high complexity.
    “We used a Drosophila neural stem cell (NSCs) tumor model, which is induced by the depletion of the well-known tumor suppressor called Brat. By using this model, we investigated whether the metabolism plays an active role in Brat tumor cell immortalization. Our findings in Drosophila will then be used as a basis for subsequent studies in human cells and lay the basis for mechanistic studies of human cancers,” explains Jürgen Knoblich, IMBA group leader and Scientific Director.
    Indeed, the researchers found Brat tumors to be highly oxidative, with higher oxygen consumption rates compared to normal brains. This proved to be quite the surprising discovery, as tumors are widely considered to be glycolytic.
    In an additional exciting finding, the scientists from Knoblich’s team found that the oxidative metabolism, which is a mitochondrial oxygen-dependent bioenergetic pathway, plays a key role in tumor cell immortalization. “We noticed that during tumor initiation, the mitochondrial membranes are fused. This drastic change in mitochondrial morphology leads to an increase in efficiency in oxidative phosphorylation, which explains why we found increased levels of NAD+ and NADH, two key molecules involved in bioenergetics,” explains François Bonnay, postdoc in the Knoblich lab and first author of the study.

    With additional experiments, the scientists showed that in the Drosophila brain, it is indeed the increased oxidative phosphorylation and NADH/NAD+ metabolism mediated by mitochondrial fusion which is absolutely necessary for tumor initiating cells to become immortal.
    “Our findings overturn previous concepts about the biology of these tumors and open up an array of exciting follow up questions, including whether the mechanisms we just discovered in the fruit fly are also applicable to mammalian tumors. Questions we will also strive to answer are, how exactly does the NADH/NAD+ metabolism favour tumor cell immortalization, and does it achieve this via signalling, or through epigenetic changes? We are thrilled to advance our work in this field”, says Knoblich.

    Original publication: “Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis”, François Bonnay, Ana Veloso et al., Cell, 2020.
    DOI doi.org/10.1016/j.cell.2020.07.039

    BA
    IMBA - Institute of Molecular Biotechnology - is one of the leading biomedical research institutes in Europe focusing on cutting-edge stem cell technologies, functional genomics, and RNA biology. IMBA is located at the Vienna BioCenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research. The stem cell and organoid research at IMBA is being funded by the Austrian Federal Ministry of Science and the City of Vienna.
    www.imba.oeaw.ac.at


    Wissenschaftliche Ansprechpartner:

    Ines Méhu-Blantar
    ines.mehu-blantar@imba.oeaw.ac.at


    Originalpublikation:

    Original publication: “Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis”, François Bonnay, Ana Veloso et al., Cell, 2020.
    DOI doi.org/10.1016/j.cell.2020.07.039


    Weitere Informationen:

    https://www.imba.oeaw.ac.at/research-highlights/feeding-off-fusion-the-immortali...


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Chemie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).