Sonnenenergie kann zur Herstellung von Wasserstoff, einem vielseitigen Brennstoff, genutzt werden. Um dies durch elektrolytische Wasserspaltung zu erreichen, werden hochwertige Photoelektroden benötigt. Leider neigen die bekannten Materialien dazu, während des Prozesses zu korrodieren. Nun hat ein Team am HZB in internationaler Zusammenarbeit die Korrosionsprozesse von hochwertigen BiVO4-Photoelektroden untersucht. Sie beobachteten die Prozesse "in operando" (bei der elektrolytischen Wasserspaltung) während der Sauerstoff-Entwicklungsreaktion (OER). Diese Arbeit zeigt, wie die Stabilität von Photoelektroden und Katalysatoren verglichen und so auch verbessert werden kann.
Wasserstoff ist ein vielseitiger Brennstoff, der chemische Energie speichern und bei Bedarf freisetzen kann. Dieser Brennstoff lässt sich klimaneutral erzeugen, wenn man die elektrolytische Aufspaltung von Wasser in Wasserstoff und Sauerstoff mit Solarenergie erreicht. Für diesen Ansatz sind kostengünstige Photoelektroden erforderlich, die unter Beleuchtung eine bestimmte Photospannung liefern und in wässrigen Elektrolyten stabil bleiben.
Hier liegt jedoch das Haupthindernis; konventionelle Halbleiter korrodieren in Wasser sehr schnell. Metalloxid-Dünnschichten sind viel stabiler, korrodieren aber dennoch mit der Zeit. Eines der erfolgreichsten Photoanodenmaterialien ist Wismutvanadat (BiVO4), ein komplexes Metalloxid, in dem die Photoströme bereits nahe an der theoretischen Grenze liegen. Die größte Herausforderung für eine kommerziell nutzbare PEC-Wasserspaltung besteht darin, die Stabilität von Photoelektrodenmaterialien während ihres PEC-Betriebs zu bewerten und zu verbessern.
Zu diesem Zweck hat ein Team des HZB-Instituts für Solare Brennstoffe unter der Leitung von Prof. Roel van de Krol zusammen mit Gruppen des Max-Planck-Instituts für Eisenforschung, des Helmholtz-Instituts Erlangen-Nürnberg für Erneuerbare Energien, der Universität Freiburg und des Imperial College London eine Reihe modernster Charakterisierungsmethoden eingesetzt, um die Korrosionsprozesse von hochwertigen BiVO4-Photoelektroden zu verstehen.
"Bisher konnten wir nur Photoelektroden vor und nach photoelektrochemischer Korrosion untersuchen", sagt Dr. Ibbi Ahmet (HZB), der die Studie zusammen mit Siyuan Zhang vom Max-Planck-Institut initiiert hat. "Es war ein bisschen so, als würde man nur das erste und das letzte Kapitel eines Buches lesen und nicht wissen, wie alle Charaktere gestorben sind". In einem ersten Schritt zur Lösung dieses Problems stellte der Chemiker eine Reihe von hochreinen BiVO4-Dünnfilmen zur Verfügung, die in einer neu konzipierten Durchflusszelle mit verschiedenen Elektrolyten unter Standardbeleuchtung untersucht wurden.
Das Ergebnis ist die erste operando-Stabilitätsstudie von hochreinen BiVO4-Photoanoden während der photoelektrochemischen Sauerstoffentwicklungsreaktion (OER). Mit Hilfe der In-situ-Plasma-Massenspektrometrie (ICPMS) konnten sie in Echtzeit bestimmen, welche Elemente während der photoelektrochemischen Reaktion von der Oberfläche der BiVO4-Photoanoden gelöst wurden.
"Aus diesen Messungen konnten wir einen nützlichen Parameter, die Stabilitätszahl (S), bestimmen", sagt Ahmet. Diese Stabilitätszahl wird aus dem Verhältnis zwischen den erzeugten O2-Molekülen und der Anzahl der gelösten Metallatome im Elektrolyten berechnet und ist in der Tat ein perfekt vergleichbares Maß für die Photoelektrodenstabilität. Die Stabilität einer Photoelektrode ist hoch, wenn die Spaltung von Wasser schnell voranschreitet (in diesem Fall die Entwicklung von O2) und nur wenige Metallatome in den Elektrolyten gelangen. Dieser Parameter kann auch verwendet werden, um die Veränderung der Photoelektrodenstabilität während ihrer Lebensdauer zu bestimmen oder Unterschiede in der Stabilität von BiVO4 in verschiedenen pH-gepufferten Borat-, Phosphat- und Citrat-(Lochfänger-)Elektrolyten zu beurteilen.
Diese Arbeit zeigt, wie die Stabilität von Photoelektroden und Katalysatoren in der Zukunft verglichen werden kann. Die Autoren haben die Zusammenarbeit fortgesetzt und nutzen nun diese wertvollen Techniken und Erkenntnisse, um praktikable Lösungen zur Verbesserung der Stabilität von BiVO4-Fotoanoden zu entwerfen und deren Einsatz in langfristigen praktischen Anwendungen zu ermöglichen.
ACS Applied Energy Materials (2020): Different Photostability of BiVO4 in Near-pH-Neutral Electrolytes
Siyuan Zhang, Ibbi Ahmet, Se-Ho Kim, Olga Kasian, Andrea M. Mingers, Patrick Schnell, Moritz Kölbach, Joohyun Lim, Anna Fischer, Karl J. J. Mayrhofer, Serhiy Cherevko, Baptiste Gault, Roel van de Krol, and Christina Scheu.
DOI: 10.1021/acsaem.0c01904
Skalierbare großflächige BiVO4-Photoanode auf FTO mit Ni-Stromabnehmern.
HZB
Merkmale dieser Pressemitteilung:
Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler
Chemie, Energie, Physik / Astronomie, Werkstoffwissenschaften
überregional
Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).