idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
05.11.2020 15:30

Blauer Phosphor: Wie aus einem Halbleiter ein Metall wird

Konrad Kästner Pressestelle
Technische Universität Dresden

    Blauer Phosphor, ein atomar dünner synthetischer Halbleiter, wird metallisch, sobald man ihn in eine Doppellage überführt. Dies hat ein interdisziplinäres Team um Prof Thomas Heine von der TU Dresden und Prof. Gabriel Merino von dem mexikanischen Forschungsinstitut Cinvestav Merida herausgefunden. Damit beschreiben die Wissenschaftler erstmals die Möglichkeit, kleinstskalige, hocheffiziente Transistoren, die aus nur einem Element bestehen, zu konstruieren. Die Ergebnisse dieser Untersuchungen wurden als Highlight-Artikel in der aktuellen Ausgabe des Fachjournals „Physical Review Letters“ veröffentlicht.

    Das chemische Element Phosphor gilt als eines der essenziellsten Elemente für alle Lebewesen. Phosphorverbindungen sind stark am Aufbau und der Funktion von Organismen beteiligt, jeder Mensch trägt knapp ein Kilo davon in seinem Körper. Doch auch außerhalb unseres Körpers sind wir tagtäglich von Phosphaten und Phosphonaten umgeben: in unserer Nahrung, in Wasch- und Düngemitteln oder in Medikamenten.

    Phosphor kommt in mehreren Modifikationen vor, die äußerst unterschiedliche Eigenschaften aufweisen. Unter Normalbedingungen unterscheidet man dabei den weißen, den violetten, den roten und den schwarzen Phosphor. Im Jahr 2014 modellierte ein Team der Michigan State University, USA erstmals auch den „Blauen Phosphor“, der zwei Jahre später experimentell hergestellt werden konnte.

    Blauer Phosphor ist ein sogenanntes zweidimensionales (2D) Material. Aufgrund seiner einschichtigen bienenwabenartigen Struktur erinnert es an das wohl bekannteste 2D-Material: Graphen. Analog zu diesem benannte man es anschließend auch Blaues Phosphoren (engl. blue phosphorene). Dieses neuartige Halbleiter-Material wurde seitdem als äußerst vielversprechender Kandidat für optoeletronische Bauelemente untersucht.

    Wie alle Bauelemente müssen auch diese mit Strom versorgt werden, der üblicherweise über Metallelektroden in das Material gelangt. An der Schnittstelle Metall-Halbleiter treten gezwungenermaßen Energieverluste auf, man spricht auch von der Schottky-Barriere.
    Der Dresdner Chemiker Prof. Thomas Heine hat nun in Kooperation mit mexikanischen Wissenschaftlerinnen und Wissenschaftlern eine einzigartige Entdeckung gemacht: Dem interdisziplinären Team gelang es, mittels hochgenauen Berechnungen auf Hochleistungscomputern eine zweischichtige Bienenwabenstruktur aus blauem Phosphor zu modellieren. Diese zweischichtige Verbindung besitzt kleine Auswölbungen und ist äußerst stabil. Wie die Wissenschaftlerinnen und Wissenschaftler überraschend feststellten, verfügt sie aufgrund des äußerst geringen Abstands zwischen den zwei Schichten über metallische Eigenschaften.

    Blaues Phosphoren ist folglich als Einzellage halbleitend, als Doppellage jedoch metallisch. Metallische 2D-Materialien sind sehr selten, und es wurde zum ersten Mal ein reinelementares Material entdeckt, dass einen Halbleiter-Metall-Übergang von der Monolage zur Doppellage aufweist. Somit läßt sich aus nur einem chemischen Element ein elektronisches oder optoelektronisches Bauelement für die Anwendung in Transistoren oder Photozellen realisieren. Da in diesen Bauelementen keine Schnittstelle zwischen Halbleiter und Metall auftritt, wird die Schottkybarriere stark verringert und eine höhere Effizienz ist zu erwarten.

    „Stellen Sie sich vor, Sie legen zwei Lagen Papier aufeinander, und auf einmal glänzt das Doppelblatt metallisch wie Goldfolie. Genau das ist uns gelungen. Diese Arbeit unterstreicht die Bedeutung von Interdisziplinarität in der Grundlagenforschung. Mit einem topologisch-mathematischen Modell konnten wir mit Hilfe der theoretischen Chemie ein neues Material im Computer entwerfen und dessen physikalische Eigenschaften vorhersagen. Anwendungen im Bereich der Nano- und Optoelektronik sind zu erwarten,“ erläutert Prof. Heine.

    Für diese vielversprechenden Ergebnisse der Grundlagenforschung wurde die Erstautorin Jessica Arcudia aus Mexiko bereits mit dem Posterpreis der LatinXChem sowie dem ACS Presidential Award ausgezeichnet. Die Chemikerin war 2018 als Gaststudentin in der Arbeitsgruppe von Thomas Heine, wo zuvor auch schon ihr Doktorvater Prof. Gabriel Merino zu Gast war.

    Bildunterschrift: Auf Hochleistungsrechnern haben die Wissenschaftlerinnen und Wissenschaftler eine zweischichtige Bienenwabenstruktur mit kleinen Auswölbungen aus blauem Phosphor modelliert. Diese Verbindung ist äußerst stabil und besitzt durch den geringen Abstand zwischen den beiden Schichten metallische Eigenschaften. Copyright: Jessica Arcudia


    Wissenschaftliche Ansprechpartner:

    Prof. Thomas Heine
    Professur für Theoretische Chemie
    Tel.: +49 351 463-37637
    Email: Thomas.Heine@tu-dresden.de


    Originalpublikation:

    Jessica Arcudia, Roman Kempt, Miguel Eduardo Cifuentes-Quintal, Thomas Heine, und Gabriel Merino. Blue phosphorene bilayer is a two-dimensional metal - and an unambiguous classification scheme for buckled hexagonal bilayers. Physical Review Letters.
    DOI: https://doi.org/10.1103/PhysRevLett.125.196401


    Bilder

    Auf Hochleistungsrechnern modellierte zweischichtige Bienenwabenstruktur aus blauem Phosphor.
    Auf Hochleistungsrechnern modellierte zweischichtige Bienenwabenstruktur aus blauem Phosphor.

    Copyright: Jessica Arcudia


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Auf Hochleistungsrechnern modellierte zweischichtige Bienenwabenstruktur aus blauem Phosphor.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).