The joint Research Training Group “Asymptotic Invariants and Limits of Groups and Spaces” (RTG 2229), sponsored by mathematicians at Heidelberg University together with colleagues from the Karlsruhe Institute of Technology, is continuing its work in a second funding period. After successful reviews, the German Research Foundation (DFG) is granting the research training group that deals with specific research issues in geometry around 5,1 million euros in funding for another four and a half years. The doctoral students of the RTG will investigate invariants of continuous and discrete spaces, which describe their geometry at infinity.
Press Release
Heidelberg, 9 November 2020
Funding Doctoral Students in Mathematics
DFG extends joint research training group at Heidelberg University and Karlsruhe Institute of Technology
The joint Research Training Group “Asymptotic Invariants and Limits of Groups and Spaces” (RTG 2229), sponsored by mathematicians at Heidelberg University together with colleagues from the Karlsruhe Institute of Technology, is continuing its work in a second funding period. After successful reviews, the German Research Foundation (DFG) is granting the research training group that deals with specific research issues in geometry around 5,1 million euros in funding for another four and a half years. The doctoral students of the RTG will investigate invariants of continuous and discrete spaces, which describe their geometry at infinity. The spokespersons are Prof. Dr Roman Sauer (Karlsruhe) and Prof. Dr Anna Wienhard (Heidelberg).
The issue at the heart of the work of the research training group – according to the researchers nationally and internationally the first systematic and institutionalised doctoral training in this field – is asymptotic geometry. That involves research into macroscopic properties of geometric spaces. Observing them as it were from a great distance eliminates the difference between a continuous space and approaching it discretely. This thereby enables a uniform examination of geometric structures. The interaction between different mathematical methods plays an important role here. According to Prof. Wienhard, central research questions can often only be resolved by an approach transcending the boundaries of classical mathematical areas. To that end the research expertise at Karlsruhe Institute of Technology and Heidelberg University complement each other extremely well. The research training group cooperates closely with the newly funded Research Station “Geometry and Dynamics” at Heidelberg University.
Through the research training programme, the doctoral students receive a broad methodological training in geometry, dealing with dynamic, analytic, group theory, topological and differential geometric issues. In addition, they are to acquire skills in communication, presentation and networking, which will be crucial for their later work as leading scientists in academia and industry. The international programme of the research training group will give doctoral students the opportunity to spend up to three months in a renowned research group abroad and to make new academic contacts.
Contact:
Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de
http://www.groups-and-spaces.kit.edu RTG 2229
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Mathematik
überregional
Forschungsprojekte, Kooperationen
Englisch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).