idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project

idw-News App:


Google Play Store

13.11.2020 08:29

INNO4COV-19 – Boosting Innovations for COVID-19 Diagnostic, Prevention and Surveillance

Franziska Lehmann Unternehmenskommunikation
Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

    The recently launched 6.1 million Euro project INNO4COV-19, funded by the European Commission (grant agreement no. 101016203), will support the marketing of new products to combat COVID-19 over the next two years, throughout Europe. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP is contributing its know-how in sterilization using accelerated electrons and on near-to-eye visualization.

    The €6.1 million project INNO4COV-19 is committed to supporting the commercialization of new products across Europe for combatting COVID-19 over the next two years.

    Looking for the fast development of products – from medical technologies to surveillance solutions - the project will boost innovation to tackle the new coronavirus, reinforcing Europe's technological leadership, and invigorating an industrial sector capable of protecting citizens' safety and well-being.

    Officially starting on October 1, the virtual kick-off took place on October 6 – 7, counting with the support of two European Commission officers.

    The 11-partner consortium led by INL – International Iberian Nanotechnology Laboratory, is looking for efficient and fast solutions that can help in the fight against COVID-19 jointly with the other actively involved industrial and RTO partners.

    The mission of INNO4COV-19 is to create a “lab-to-fab” platform and a collaboration resource where companies and reference laboratories will find the tools for developing and implementing innovative technologies – from idea assessment to market exploitation. This work will be carried out as part the European Union Coronavirus initiative and in strong collaboration with all the funded projects where to accelerate the time to market for any promising product.

    INNO4COV-19 is set to assist up to 30 test cases and applications from several areas spanning from Medical technologies, Environmental Surveillance systems, Sensors, Protection of Healthcare workers and Artificial Intelligence and Data mining. To achieve this, INNO4COV-19 is awarding half of the budget to support 30 enterprises selected through a set number of open calls during the first year of the project.

    The first call will be launched in November 2020 across several platforms. Awardees will receive up to €100,000 each and benefit from the INNO4COV-19 consortium's technical, regulatory, and Business expertise.

    Roll-to-Roll Equipment and Electron Beam Technology for Large Area Sterilization of textile materials

    During pandemic events like COVID-19, MERS, SARS or Ebola a substantial shortage of sterile materials for medical uses was observed due to peak demands. Fraunhofer FEP will contribute their roll-to-roll equipment and electron beam technology for the purpose of large area sterilization of textile materials to the INNO4COV-19 project.

    Usually the textile material is produced in non-sterile conditions and therefore must be sterilized before being delivered to the consumers (e. g. hospitals); Sterilization at product level (sterilizing the final manufactured masks) is limited in throughput, due to a high number of individual small pieces, that must be sterilized.

    Project manager Dr. Steffen Günther of Fraunhofer FEP explains the role and aims of the institute in more detail: “INNO4COV-19 will establish and verify a process chain for high throughput (4500 m²/h) electron beam sterilization of fabric material in roll-form in a single TRL 7 pilot machine to allow efficient manufacturing of sterile face masks and other fabric based sterile products without the need to sterilize the final product.”

    OLED Microdisplays for Detecting Infected People

    Another topic of Fraunhofer FEP within INNO4COV-19 deals with the earliest possible detection of infected people. A widely used strategy to early identify individuals with disease symptoms is body temperature screening using thermal cameras.

    One possibility to allow continuous body temperature monitoring, is the integration of a thermal camera into a smart wearable device. Therefore, Fraunhofer FEP is using their OLED microdisplay technology. This allows small (< 3 × 2 cm²), ultrathin (< 5 mm including control circuitry) and ultra-low power (< 5 mW) devices to show visual information. In combination with an infrared sensor a thermal imager will be realized to both measure body temperature and directly displays the result via near-to-eye visualization. The system can be embedded within smart glasses, hats, caps or personal face shields.

    About the project:
    The project has received funding from the European Union’s Horizon 2020 research and
    innovation programme.
    Funding reference: 101016203

    Press contact:

    Mrs. Annett Arnold

    Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
    Phone +49 351 2586 333 |
    Winterbergstraße 28 | 01277 Dresden | Germany |

    Wissenschaftliche Ansprechpartner:

    Please contact us at our email:

    Weitere Informationen:


    Roll-to-roll equipment atmoFlex 1250 for large area sterilization of fabrics or other flexible materials
    Roll-to-roll equipment atmoFlex 1250 for large area sterilization of fabrics or other flexible mater ...
    Jan Hosan
    © Fraunhofer FEP, Picture in printable resolution:

    Ultra-low power OLED microdisplay
    Ultra-low power OLED microdisplay
    Anna Schroll
    © Fraunhofer FEP, Picture in printable resolution:

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie, Medizin, Physik / Astronomie, Werkstoffwissenschaften
    Forschungsprojekte, Kooperationen


    Roll-to-roll equipment atmoFlex 1250 for large area sterilization of fabrics or other flexible materials

    Zum Download


    Ultra-low power OLED microdisplay

    Zum Download



    Die Suche / Erweiterte Suche im idw-Archiv

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.


    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).


    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.


    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).