idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.11.2020 17:00

Wheat Diversity Due to Cross-Hybridization with Wild Grasses

Kurt Bodenmüller Kommunikation
Universität Zürich

    Bread wheat can grow in highly diverse regional environments. An important reason for its great genetic variety is the cross-hybridization with many chromosome fragments from wild grasses. This is shown by the genome sequences of 10 wheat varieties from four continents, which an international consortium including researchers from the University of Zurich has now decoded.

    A variety of bread wheat that flourishes across Switzerland would remain just a poorly growing grass in India. This ability to adapt to regional climate conditions and environmental factors makes bread wheat the most commonly grown crop around the world. Its cultivation dates back around 8,000 years. Over time, more than 560,000 different varieties have developed. Seeds of each variety are stored in international seed vaults. Until now, however, the genetic factors responsible for the diversity and adaptability of wheat were largely unknown.

    Genomes of 10 wheat varieties completely deciphered

    Previously, the only bread wheat genome to have been decoded was from an old Chinese landrace. It has served as a model plant in research for many years, but differs greatly from the properties of more modern wheat varieties used in agriculture. Now an international consortium led by University of Saskatchewan wheat breeder Curtis Pozniak and involving more than 100 researchers from nine countries – including plant and evolutionary biologists from the University of Zurich (UZH) – has completely sequenced the genomes of 10 wheat varieties from North America, Asia, Australia and Europe. “The 10 varieties represent a significant portion of the worldwide variety of wheats. The genome data, which are freely available to all interested parties, constitute an important resource for humanity,” says Beat Keller, professor at the UZH Department of Plant and Microbial Biology.

    Chromosome fragments from wild grasses cross-hybridized

    With around 100,000 genes on 21 chromosomes, the wheat genome is approximately five times larger than the human genome. Like other kinds of grains, the modern common wheat has a multiple set of chromosomes that came about through hybridization and combining of three different parent plants. “We were able to find numerous differences in the genome structure of the investigated wheat varieties. They differ in particular through large chromosome fragments which at some time in the past were cross-hybridized by wild grasses,” adds UZH researcher Thomas Wicker, one of the corresponding authors of the study. While some of these fragments were transferred through targeted cultivation, the source of most fragments is still unknown.

    Crossing of species boundaries leads to diversity

    If chromosome fragments from wild grasses are crossed with wheat, the species boundary has been crossed. According to the researchers, this process is a significant biological factor behind the diversity and adaptability of wheat. This is exemplified by the large differences in the type and number of immune receptors they discovered in the genome sequences. “This variability shows that the different varieties have adapted to the regionally varying plant diseases, such as viruses and fungi, or pests, such as insects,” says Wicker.

    Meet rising demand thanks to more targeted cultivation

    According to Kentaro Shimizu, UZH professor at the Department of Evolutionary Biology and Environmental Studies, triple chromosome sets of bread wheat gives it another evolutionary advantage: “Single genes can change while other copies of the same gene retain their original function. The plant then has a greater repertoire of possibilities for adaptation.” Alongside the discovery of the genes for particular quality features and resistances, which are of agronomic significance – exemplified by the Japanese cultivar Norin 61 in an additional publication of the UZH researchers – , the “10+ Wheat Genome Project” also enables a more targeted cultivation of specific wheat varieties, which will help that the rising worldwide demand can be met in the future.

    Funding
    The Swiss wheat variety “ArinaLrFor” was among the 10 decoded wheat genomes. The project was financed by the Federal Office for Agriculture, UZH and organizations and firms in the area of wheat cultivation, wheat production, and the baking industry. The Japanese wheat variety “Norin 61” was decoded by researchers from UZH in collaboration with the Japan Science and Technology Agency.


    Wissenschaftliche Ansprechpartner:

    PD Dr. Thomas Wicker
    Department of Plant and Microbial Biology
    University of Zurich
    Phone: +41 44 634 82 52
    E-mail: wicker@botinst.uzh.ch

    Prof. Dr. Beat Keller
    Department of Plant and Microbial Biology
    University of Zurich
    Phone: +41 44 634 82 30
    E-mail: bkeller@botinst.uzh.ch

    Prof. Dr. Kentaro K. Shimizu
    Department of Evolutionary Biology and Environmental Studies
    University of Zurich
    Phone: +41 44 635 67 40
    E-mail: kentaro.shimizu@ieu.uzh.ch


    Originalpublikation:

    Sean Walkowiak, Liangliang Gao, Cecile Monat et. al. Multiple wheat genomes reveal global variation in modern breeding. Nature. 25 November 2020. DOI: 10.1038/s41586-020-2961-x


    Weitere Informationen:

    https://www.media.uzh.ch/en/Press-Releases/2020/Wheat-Diversity.html


    Bilder

    Great genetic diversity: There are more than 560,000 different varieties of bread wheat.
    Great genetic diversity: There are more than 560,000 different varieties of bread wheat.
    Rebecca Leber, UZH

    Due to its great adaptability to different climatic conditions and environmental factors, wheat thrives in numerous regions worldwide.
    Due to its great adaptability to different climatic conditions and environmental factors, wheat thri ...
    Rebecca Leber, UZH


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Tier / Land / Forst
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Great genetic diversity: There are more than 560,000 different varieties of bread wheat.


    Zum Download

    x

    Due to its great adaptability to different climatic conditions and environmental factors, wheat thrives in numerous regions worldwide.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).