idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.12.2020 11:02

The Pressure Sensor of the Venus Flytrap

Robert Emmerich Presse- und Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

    The display of a smartphone reacts to finger pressure. The carnivorous Venus flytrap, on the other hand, even notices when a lightweight like a fly lands on it. Special genes make this possible.

    All plant cells can be made to react by touch or injury. The carnivorous Venus flytrap (Dionaea muscipula) has highly sensitive organs for this purpose: sensory hairs that register even the weakest mechanical stimuli, amplify them and convert them into electrical signals that then spread quickly through the plant tissue.

    Researchers from Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, have isolated individual sensory hairs and analysed the gene pool that is active in catching insects. "In the process, we found for the first time the genes that presumably serve throughout the plant kingdom to convert local mechanical stimuli into systemic signals," says JMU plant researcher Professor Rainer Hedrich.

    That's a fine thing, because virtually nothing was known about mechano-receptors in plants until now. Hedrich's team presents the results in the open-access journal PLOS Biology.

    Sensory hairs convert touch into electricity

    The hinged trap of Dionaea consists of two halves, each carrying three sensory hairs. When a hair is bent by touch, an electrical signal, an action potential, is generated at its base. At the base of the hair are cells in which ion channels burst open due to a stretching of their envelope membrane and become electrically conductive. The upper part of the sensory hair acts as a lever that amplifies the stimulus triggered by even the lightest prey.

    These micro-force-touch sensors thus transform the mechanical stimulus into an electrical signal that spreads from the hair over the entire flap trap. After two action potentials, the trap snaps shut. Based on the number of action potentials triggered by the prey animal during its attempts to free itself, the carnivorous plant estimates whether the prey is big enough - whether it is worth setting the elaborate digestion in motion.

    From genes to the function of the touch sensor

    To investigate the molecular basis for this unique function, Hedrich's team "harvested" about 1000 sensory hairs. Together with JMU bioinformatician Professor Jörg Schultz, they set out to identify the genes in the hairs.

    "In the process, we noticed that the fingerprint of the genes active in the hair differs from that of the other cell types in the trap," says Schulz. How is the mechanical stimulus converted into electricity? "To answer this, we focused on the ion channels that are expressed in the sensory hair or are found exclusively there," says Hedrich.

    In search of further ion channels

    The sensory hair-specific potassium channel KDM1 stood out. Newly developed electrophysiological methods showed that without this channel, the electrical excitability of the sensory hairs is lost, i.e. they can no longer fire action potentials. "Now we need to identify and characterise the ion channels that play an important role in the early phases of the action potential," Hedrich said.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Rainer Hedrich, Chair of Botany I (Plant Physiology and Biophysics), University of Würzburg, T +49 931 31-86100, hedrich@botanik.uni-wuerzburg.de


    Originalpublikation:

    "The Venus flytrap trigger hair-specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signalling." Anda L. Iosip, Jennifer Böhm, Sönke Scherzer, Khaled A. S. Al-Rasheid, Ingo Dreyer, Jörg Schultz, Dirk Becker, Ines Kreuzer, Rainer Hedrich. PLOS Biology, 9 December 2020, https://doi.org/10.1371/journal.pbio.3000964


    Bilder

    Open trap of Dionaea muscipula with potential prey, basal part of a trigger hair, reimport of potassium ions into sensory cells via KDM1 to enable the generation of consecutive action potentials.
    Open trap of Dionaea muscipula with potential prey, basal part of a trigger hair, reimport of potass ...
    Ines Kreuzer, Soenke Scherzer
    University of Wuerzburg


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Biologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Open trap of Dionaea muscipula with potential prey, basal part of a trigger hair, reimport of potassium ions into sensory cells via KDM1 to enable the generation of consecutive action potentials.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).