idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.01.2021 16:10

Darkness from Light

Clarissa Grygier Kommunikation und Marketing
Max-Planck-Institut für die Physik des Lichts

    Microresonators are small glass structures in which light can circulate and build up in intensity. Due to material imperfections, some amount of light is reflected backwards, which is disturbing their function. Researchers have now ­demonstrated a method for suppressing these unwanted back reflections. Their findings can help improve a multitude of micro­resonator-based applications from measurement technology such as sensors used for example in drones, to optical information processing in fibre networks and computers.

    The results of the team spanning the Max Planck Institute for the Science of Light (Germany), Imperial College London, and the National Physical Laboratory (UK) are published now in the Nature-­family journal Light: Science and Applications.

    Researchers and engineers are discovering many uses and ­applications for optical microresonators, a type of device often referred to as a light trap. One limitation of these devices is that they have some amount of back reflection, or backscattering, of light due to material and surface imperfections. The back ­reflected light negatively impacts the usefulness of the tiny glass structures. To reduce the unwanted back­scattering, the British and German scientists were inspired by noise ­cancelling headphones, but rather using optical than acoustic ­interference.

    “In these headphones, out-of-phase sound is played to cancel out undesirable background noise,” says lead author Andreas Svela from the Quantum Measurement Lab at Imperial College London. “In our case, we are introducing out-of-phase light to cancel out the back reflected light,” Svela continues.

    To generate the out-of-phase light, the researchers position a sharp metal tip close to the microresonator surface. Just like the intrinsic imperfections, the tip also causes light to scatter backwards, but there is an important difference: The phase of the reflected light can be chosen by controlling the position of the tip. With this control, the added backscattered light’s phase can be set so it annihilates the intrinsic back reflected light – the researchers produce darkness from light.

    “It is an unintuitive result, by introducing an additional scatterer, we can reduce the total backscattering,” says co-author and principal investigator Pascal Del’Haye at the Max Planck Institute for the Science of Light. The published paper shows a record suppression of more than 30 decibels compared to the intrinsic back reflections. In other words, the unwanted light is less than a thousandth of what it was prior to applying the method.

    “These findings are exciting as the technique can be applied to a wide range of existing and future microresonator technologies,” comments principal investigator Michael Vanner from the Quantum Measurement Lab at Imperial College London. For example, the method can be used to improve gyroscopes, sensors that for instance help drones navigate; or to improve portable optical spectroscopy systems, opening for scenarios like built-in sensors in smartphones for detection of dangerous gasses or helping check the quality of groceries. Furthermore, optical components and networks with better signal quality allow to transport more information even faster.


    Wissenschaftliche Ansprechpartner:

    Dr Pascal Del'Haye, pascal.delhaye@mpl.mpg.de


    Originalpublikation:

    A. Ø. Svela, J. M. Silver, L. Del Bino, S. Zhang, M. T. M. Woodley, M. R. Vanner, and P. Del’Haye: Coherent suppression of backscattering in optical microresonators, Light: Science and Applications (2020), doi.org/10.1038/s41377-020-00440-2


    Bilder

    An optical microresonator and a sharp tungsten tip. The tip’s position can control the amount of back reflections in the microresonator. The authors show more than 30 dB suppression below the intrinsic backscattering.
    An optical microresonator and a sharp tungsten tip. The tip’s position can control the amount of bac ...
    Andreas Svela
    MPL/Andreas Svela


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Englisch


     

    An optical microresonator and a sharp tungsten tip. The tip’s position can control the amount of back reflections in the microresonator. The authors show more than 30 dB suppression below the intrinsic backscattering.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).