idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Thema Corona

Imagefilm
Science Video Project



Teilen: 
12.01.2021 18:42

Tiny molecules with a big impact

Dr. Stefanie Seltmann Presse- und Öffentlichkeitsarbeit
Berlin Institute of Health (BIH)

    The human organism requires a variety of small molecules, such as sugars or fats, in order to function properly. The composition of these so-called metabolites and their interaction – the metabolism – varies from person to person and is dependent not only on external influences, such as nutrition, but also to a significant extent on natural variations in our genetic make-up.

    In an international study, scientists from the Berlin Institute of Health (BIH) and Charité – Universitätsmedizin Berlin joined forces with colleagues from the United Kingdom, Australia and the United States and discovered hundreds of previously unknown variations in genes that have a sometimes drastic impact on the concentration of these small molecules in the blood. The researchers have now published their findings in the journal Nature Genetics.

    The concentration and composition of metabolites – small molecules in the blood or tissue fluid – provide information about biological processes in the human body. They therefore serve as important biomarkers in clinical medicine, for example in the diagnosis of diseases or in checking the effectiveness of a therapy. Interestingly, the composition of metabolites differs from person to person, independent of external influences such as illness or diet. This is because the blueprints for the proteins that influence metabolite concentration, such as enzymes and transporter proteins, also differ between individuals. Often, the tiniest genetic variants can cause a metabolic enzyme to be more or less active or a transporter protein to be more or less efficient, thus raising or lowering the concentration of metabolites.

    Data analyzed from 85,000 people

    The team led by Claudia Langenberg, BIH Professor of Computational Medicine, has now investigated the effect of genetic variants on 174 different metabolites. “We found a surprising number of correlations between certain genetic variants and changes in the concentration of small molecules in the blood,” reports the epidemiologist. “In most cases, the genetic variants cause changes in the blueprint of key metabolism regulators, like enzymes or transporters.”

    To explore these correlations, Langenberg’s team needed huge amounts of data. “For our studies, we used large databases that gave us the blood test results and genetic information of a total of around 85,000 people,” explains Maik Pietzner, lead author of the study and a scientist in Langenberg’s laboratory. “In doing so, we were able to successfully demonstrate that it is possible to jointly evaluate data from a variety of small individual studies, even across technological boundaries.”

    Genetic variants can contribute to common diseases

    The scientists’ work is highly relevant to medicine, because it can explain how naturally occurring genetic variants that influence the metabolism contribute to the onset of common diseases, such as diabetes mellitus, as well as rare diseases. For example, high levels of the amino acid serine in the blood seem to provide protection against a rare eye disease called macular telangiectasia – knowledge that opens up new therapeutic avenues. In another study, the authors were also able to show that an individual’s genetic risk for altered serine metabolism can aid in the early diagnosis of this serious eye disease. They have also identified a new mechanism that explains how the disrupted transmission of signals via the GLP-2 receptor increases the risk of developing type 2 diabetes.

    “What was special about our study were the extreme effects that we observed and their potential relevance for medical research,” explains Langenberg. “For example, we were able to detect genetic variants that have an influence on metabolism a good three times as strong as the already known effects of more common genetic variations, for example on body mass index.”

    Data is only relevant if used

    To enable scientists around the world to link up their particular fields of expertise with their data, the team has set up an interactive website at www.omicscience.org. After all, Langenberg emphasizes, data is only relevant if it can also be used: “We very much hope that these compelling examples will encourage other scientists and doctors to apply our results to their specific research or disease cases.”

    ---------------------------

    About the Berlin Institute of Health (BIH)

    The mission of the Berlin Institute of Health (BIH) is medical translation: transferring biomedical research findings into novel approaches to personalized prediction, prevention, diagnostics and therapies and, conversely, using clinical observations to develop new research ideas. The aim is to deliver relevant medical benefits to patients and the population at large. As the translational research unit within Charité, the BIH is also committed to establishing a comprehensive translational ecosystem – one that places emphasis on a system-wide understanding of health and disease and that promotes change in the biomedical translational research culture. The BIH was founded in 2013 and is funded 90 percent by the Federal Ministry of Education and Research (BMBF) and 10 percent by the State of Berlin. The founding institutions, Charité – Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), were independent, member entities within the BIH until 2020. Since 2021 the BIH has been integrated into Charité as the so-called third pillar. The MDC is now the Privileged Partner of the BIH.


    Wissenschaftliche Ansprechpartner:

    Professor Claudia Langenberg, Berlin Institute of Health


    Originalpublikation:

    Luca A Lotta, Maik Pietzner, ……,Claudia Langenberg: “A cross-platform approach identifies genetic regulators of human metabolism and health.” Nature Genetics 2021, DOI 10.1038/s41588-020-00751-5


    Weitere Informationen:

    https://www.bihealth.org/en/notices/kleine-molekuele-mit-grosser-wirkung


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie, Medizin
    überregional
    Forschungsergebnisse
    Englisch


    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).