idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
20.01.2021 12:55

Extensive data resource for microbiome research

Susanne Thiele Presse und Kommunikation
Helmholtz-Zentrum für Infektionsforschung

    HZI bioinformaticians bring to light a natural CRISPR system of the human microbiome

    A huge community of microorganisms lives on and in our body – the microbiota. It is often also referred to as the microbiome, although the term microbiome actually describes the genetic information of the microbiota. Microbiome research is a relatively young field of research. Many fundamental questions are still open, and the search for possible therapeutic approaches is still in its infancy. Bioinformaticians at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, in cooperation with researchers from the Department of Biostatistics at the Harvard School of Public Health in Boston, USA, have now identified CRISPR regions of the human microbiome on the basis of the Human Microbiome Project (HMP1-II). These regions form part of the bacterial defence system against viruses and can provide an overview of past attacks. The scientists are making their extensive data resource available to microbiome research so that the interactions between viruses and bacteria can be explored further. The study, funded by the German Research Foundation (DFG), is published in the current issue of the journal Cell Host & Microbe.

    Essentially, we are never alone – because they are always with us: billions of microorganisms – such as bacteria, viruses or fungi – inhabit our bodies. They live on our skin, in our mouths, noses or intestines – depending on the preferences of our tiny cohabitants and the demands they make of their environment. “For the most part, the microbiota consists of bacteria that are well-disposed and extremely useful to us,” says Prof. Alice McHardy. “In the gut, for example, they influence how well we digest certain foods and absorb nutrients. On the skin, they form an important part of our natural protective skin barrier.” McHardy heads the HZI Department of Computational Biology of Infection Research, which is housed at the Braunschweig Integrated Centre of Systems Biology BRICS, and also coordinates the bioinformatics of the German Center for Infection Research (DZIF).

    It is well known that the microbial community is important for our health and even essential to our survival. If it becomes unbalanced due to external or internal influences, pathogens can gain the upper hand and damage our health. However, there are still many unanswered questions about the human microbiota: What does it exactly consist of? What species are particularly abundant in the various parts of the body? To what extent are they exposed to attacks by viruses? How does the microbial community react to disturbances, how can it be brought back into balance? And where are possible starting points for medical therapies?

    Using data science to gain new knowledge about the human microbiome

    To come a step closer to answering these and many other questions, McHardy and her HZI team collaborated with researchers at the Harvard School of Public Health to generate an extensive data resource for characterising the human microbiome – the genetic information of the microbial community living on and in us. The study was based on data from the Human Microbiome Project (HMP1-II). For this purpose, healthy study participants had samples of their microbiota taken from different parts of their bodies, and the DNA they contained was sequenced. “We analysed this sequence data from over 2000 samples for specific DNA segments that are particularly import for characterising the microbiome and could also represent possible starting points for medical therapies in the future,” says Philipp Münch, a doctoral student in the McHardy work group and lead author of the study.

    In particular, the researchers searched for DNA segments known as CRISPR or spacers. The abbreviation CRISPR stands for “clustered regularly interspaced short palindromic repeats”. These short DNA fragments occur in the genome of bacteria. They are named after their regular pattern of repeating and mirror-image sequences and can be quickly and reliably detected in sequence analyses due to their concise structure. Between two such CRISPR sequences, so-called spacers are found. These are DNA segments that provide evidence of previous viral attacks – because bacteria can also be attacked by viruses. The more often a bacterium has survived such an attack, the more CRISPR spacer regions it carries in its DNA. They form the core of the bacterial immune system, detecting foreign DNA that viruses introduce into bacterial cells in order to multiply within them. Each spacer region is tailored to a very specific virus with which the bacterium has already come into contact. This enables it to detect and disable attackers of the same virus type quickly when they attack again.

    Extensive data resource: around three million new CRISPR sequences

    “As part of our study, we have now been able to identify more than 2.9 million new sequences,” says McHardy. “This is really enormous – it is more than ten times what has been saved in the CRISPR database of all microbial genomes to date.” The researchers have compared their extensive database of CRISPR and spacer sequences with data from various genome databases to determine what already known bacterial species might be cavorting around in the microbiota, or whether they are subject to an especially large number of viral attacks in their particular location. “We have already been able to identify several known bacterial species with high CRISPR spacer load, such as a Fusobacterium found in the oral cavity or Prevotella, which is a bacterial genus that colonizes the intestine,” says Münch. “And with respect to the CRISPR system of the microbiome, the bacterial community in the oral cavity seems to be particularly well-equipped against virus attacks. Here we found a much higher number of CRISPR spacer regions than in the gut microbiome, for example.” The research team believes that the extensive data resource of the present study will allow many more questions related to the human microbiota, its microbiome and the interactions between bacteria and viruses to be answered in the future, which will further advance basic as well as applied research.

    This press release is also available on our homepage: https://www.helmholtz-hzi.de/en/news-events/news/view/article/complete/umfangrei...

    Helmholtz Centre for Infection Research:
    Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig and its other sites in Germany are engaged in the study of bacterial and viral infections and the body’s defence mechanisms. They have a profound expertise in natural compound research and its exploitation as a valuable source for novel anti-infectives. As member of the Helmholtz Association and the German Center for Infection Research (DZIF) the HZI performs translational research laying the ground for the development of new treatments and vaccines against infectious diseases. http://www.helmholtz-hzi.de/en

    Braunschweig Integrated Centre of Systems Biology:
    The Braunschweig Integrated Centre of Systems Biology (BRICS) is a joint research facility of the HZI and the Technische Universität Braunschweig. It is the aim of BRICS to conduct research in areas such as infection, formation of agents, and development of biotechnology processes by means of systems biology. http://www.tu-braunschweig.de/brics

    Contact:
    Susanne Thiele, Press Officer
    susanne.thiele@helmholtz-hzi.de
    Dr Andreas Fischer, Editor
    andreas.fischer@helmholtz-hzi.de

    Helmholtz Centre for Infection Research
    Press and Communications
    Inhoffenstr. 7
    D-38124 Braunschweig
    Germany

    Phone: +49 531 6181-1404


    Originalpublikation:

    Philipp C. Münch, Eric A. Franzosa, Bärbel Stecher, Alice C.McHardy, Curtis Huttenhower: Identification of Natural CRISPR Systems and Targets in the Human Microbiome. Cell Host & Microbe, 2020. DOI: 10.1016/j.chom.2020.10.010


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler
    Biologie, Chemie, Informationstechnik, Medizin
    überregional
    Forschungsergebnisse
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).