idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
28.01.2021 17:00

Physiker entwickeln rekordverdächtige Quelle für Einzelphotonen

Dr. Angelika Jacobs Kommunikation & Marketing
Universität Basel

    Forschende der Universität Basel und der Ruhr-Universität Bochum haben eine Quelle für einzelne Photonen entwickelt, die Milliarden dieser Quantenteilchen pro Sekunde produzieren kann. Mit ihrer rekordverdächtigen Effizienz stellt die Photonenquelle ein neues und leistungsfähiges Element für Quantentechnologien dar.

    Quantenkryptografie verspricht absolut abhörsichere Kommunikation. Eine Schlüsselkomponente sind dabei einzelne, aneinandergereihte Photonen. In den Quantenzuständen dieser Lichtteilchen lassen sich Informationen speichern und über grosse Distanzen übertragen. Künftig könnten entfernte Quantenprozessoren über einzelne Photonen miteinander kommunizieren. Und vielleicht wird der Prozessor selbst Photonen als Quantenbits zum Rechnen verwenden.

    Eine Grundvoraussetzung für derlei Anwendungen sind jedoch effiziente Einzelphotonenquellen. Ein Forschungsteam um Prof. Dr. Richard Warburton, Natasha Tomm und Dr. Alisa Javadi von der Universität Basel berichtet nun gemeinsam mit Kollegen aus Bochum im Fachblatt «Nature Nanotechnology» von der Entwicklung einer Einzelphotonenquelle, welche bisher bekannte Systeme an Effizienz deutlich übertrifft.

    «Trichter» lenkt Lichtteilchen

    Jedes Photon wird dabei durch die Anregung eines einzelnen «künstlichen Atoms» (eines Quantenpunkts) innerhalb eines Halbleiters erzeugt. Normalerweise verlassen diese Photonen den Quantenpunkt in alle möglichen Richtungen und so geht ein Grossteil verloren. Bei der nun vorgestellten Photonenquelle haben die Forschenden dieses Problem gelöst, indem sie den Quantenpunkt in einem «Trichter» positioniert haben, um alle Photonen in eine bestimmte Richtung zu schicken.

    Bei dem «Trichter» handelt es sich um einen neuartigen Mikro-Hohlraum, der die eigentliche Innovation des Forschungsteams darstellt: Der Mikro-Hohlraum fängt fast alle Photonen ein und leitet sie dann in eine optische Faser. Die jeweils etwa zwei Zentimeter langen Photonen treten am Ende der optischen Faser aus.

    Der Wirkungsgrad des gesamten Systems – also die Wahrscheinlichkeit, dass die Anregung des Quantenpunkts tatsächlich zu einem verwendbaren Photon führt – ist mit 57 Prozent mehr als doppelt so hoch wie bei bisherigen Einzelphotonenquellen. «Das ist ein besonderer Moment für uns», sagt Studienleiter Warburton. «Wir wissen schon seit ein oder zwei Jahren, was im Prinzip möglich ist. Jetzt haben wir es geschafft, unsere Ideen in die Praxis umzusetzen.»

    Enorm gesteigerte Rechenleistung

    Die Effizienzsteigerung habe bedeutende Konsequenzen, so Warburton weiter: «verdoppelt man die Effizienz für die Generation eines einzelnen Photons, summiert sich diese Verbesserung bei einem String aus beispielsweise 20 Photonen auf den Faktor eine Million. In Zukunft möchten wir unsere Einzelphotonenquelle noch besser machen: Wir möchten sie vereinfachen und einige ihrer unzähligen Anwendungen in Quantenkryptografie, Quantenrechnern und anderen Technologien verfolgen.»

    Das Projekt wurde vom Schweizerischen Nationalfonds, dem Nationalen Forschungsschwerpunkt «Quantum Science and Technology» (NCCR QSIT) und der Europäischen Union im Rahmen des Programms Horizon2020 gefördert.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Richard Warburton, Universität Basel, Departement Physik, Tel. +41 61 207 35 60, E-Mail: richard.warburton@unibas.ch


    Originalpublikation:

    Natasha Tomm, Alisa Javadi, Nadia O. Antoniadis, Daniel Najer, Matthias C. Löbl, Alexander R. Korsch, Rüdiger Schott, Sascha R. Valentin, Andreas D. Wieck, Arne Ludwig, and Richard J. Warburton
    A bright and fast source of coherent single photons
    Nature Nanotechnology (2021), doi: 10.1038/s41565-020-00831-x


    Bilder

    Die neue Einzelphotonenquelle beruht auf Anregung eines Quantenpunkts (Wölbung unten links), der daraufhin Photonen aussendet. Ein Mikro-Hohlraum sorgt dafür, dass die Photonen in eine optische Faser geleitet werden und an deren Ende wieder austreten.
    Die neue Einzelphotonenquelle beruht auf Anregung eines Quantenpunkts (Wölbung unten links), der dar ...

    Universität Basel, Departement Physik


    Merkmale dieser Pressemitteilung:
    Journalisten
    Informationstechnik, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Die neue Einzelphotonenquelle beruht auf Anregung eines Quantenpunkts (Wölbung unten links), der daraufhin Photonen aussendet. Ein Mikro-Hohlraum sorgt dafür, dass die Photonen in eine optische Faser geleitet werden und an deren Ende wieder austreten.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).