idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
09.02.2021 15:31

"Downsizing" for Municipal Utility Vehicles

Matthias Fejes Pressestelle und Crossmedia-Redaktion
Technische Universität Chemnitz

    Scientists at the Department of Lightweight Structures and Polymer Technology at Chemnitz University of Technology are developing resource-efficient collection containers for e-garbage trucks

    The drive of the future is electric. Electric motors have numerous advantages, such as increased environmental friendliness, lower operating costs, and reduced noise pollution. Due to these advantages, they also being phased in by municipalities, which are converting their commercial vehicles to the modern drive technology. They are being supported by scientists from the Department of Lightweight Structures and Polymer Technology (SLK) at Chemnitz University of Technology, who are currently fine-tuning the development of a new type of ultra-lightweight collection container for electric waste vehicles. "Particularly in short-haul operation, when it is necessary to stop frequently and accelerate again, electric vehicles of up to 3.5 tons are more efficient than conventional internal combustion vehicles," explains Marcus Hartenstein, a member of staff at the SLK department. Regarding the cities concerned, this applies, among other things, to the garbage trucks used for waste disposal.

    Extremely light and stable containers compensate for battery weight

    One of the key requirements for vehicles is the highest possible payload. The advantages of electric vehicles have, therefore, been offset by a major disadvantage. The battery weight of 200 to 300 kilograms means that the load that can be transported is insufficient. To compensate for this loss of payload, scientists at Chemnitz University of Technology have joined forces with five other research and industrial partners in the joint project UTILITAS (Ultralight Body Structures for Commercial Vehicles in Municipal Service Operations) to develop a container system that is not only extremely lightweight, but also economical and easy to manufacture. The researchers at the SLK department are responsible for designing the container. This includes its structure and rough design as well as all the necessary calculations. Since the tank design must withstand high loads, the department must also test its performance. To ensure that high payloads can be carried, the stresses are repeatedly simulated on the structural test rig at Chemnitz University of Technology’s Lightweight Technologies MERGE Research Centre.

    Great demand for lightweight solutions – companies offered know-how

    Questions of economic sustainability, future living environments, and the effects of climate change on people are increasingly in focus on the local level. Due to this, the demand for possible technologies regarding the development of potential for saving resources has increased significantly. "During the exploratory talks for the project, further needs in municipal service operations have already become clear, such as in the management of green areas or in vehicles for leaf blowing and leaf vacuuming. Last but not least, e-vehicles also save on the diesel generator here," reports Hartenstein. Due to this increasing demand, a central aspect of the project is also to generate know-how for companies and to support them by providing relevant data to generate greater freedom in material selection and joining technology.

    Efficient organic sheets offer advantages

    In order to help local authorities achieve their climate protection targets with the resources available locally, the focus in the development of the waste container and the associated manufacturing technology is on cost-effectiveness. The scientists are relying on a modular and thus adaptable container system composed of a frame structure and fiber-reinforced plastic sheets. These so-called organic sheets, made of the ThermoPre material also developed at Chemnitz University of Technology, offer numerous advantages due to their high performance and a layer structure that is tailored to requirements. At the same time, no forming is required, which ensures simple construction and repair and keeps investment costs low, even for small quantities. Various joining strategies were tested to reliably connect the modules including bolting, bonding and a mixed construction method. The latter was chosen as the final solution due to its high practicality.

    "The first electric waste transporters equipped with the innovative container system could soon be in use," says Hartenstein. A demonstration vehicle has already been built, and the simulation has been completed. "Now it's a matter of completing final design tasks and putting the container into production," the scientist is pleased to say. "A prototype for municipal utility operation should be completed as early as the first half of 2021 and tested in everyday practice. Subsequently, depending on the orders, we are aiming for serial production.”

    Strong partners in the network

    In addition to Chemnitz University of Technology, the Fraunhofer Institute for Material and Beam Technology IWS Dresden, EBF Innovation GmbH, PROFIL Verbindungstechnik GmbH & Co. KG, Car systems Scheil GmbH & Co. KG, and Marko Pfaff & Co. Spezialfahrzeugbau GmbH are part of this project. IWS Dresden developed a new joining technology specifically for the project, which is being implemented with the help of EBF Innovation GmbH and PROFIL Verbindungstechnik GmbH & Co. KG. The electronics required for tilting and controlling the container system are being taken care of by Car systems Scheil GmbH & Co. KG, while Marko Pfaff & Co. Spezialfahrzeugbau GmbH is looking at it from a manufacturing perspective.

    The project is funded by the German Federal Ministry for Economic Affairs and Energy as part of the specialist program “New Vehicle and System Technologies." That program is itself part of the program pillar "Innovative Vehicles" and is supervised by the project sponsor TÜV Rheinland.


    Wissenschaftliche Ansprechpartner:

    Marcus Hartenstein, Phone +49 371 531-39483, E-mail marcus.hartenstein@mb.tu-chemnitz.de


    Bilder

    Marcus Hartenstein, research assistant at the SLK department, checks the thickness of an organic sheet.
    Marcus Hartenstein, research assistant at the SLK department, checks the thickness of an organic she ...
    Jacob Müller
    Chemnitz University of Technology


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Maschinenbau, Mathematik
    überregional
    Forschungs- / Wissenstransfer, Forschungsprojekte
    Englisch


     

    Marcus Hartenstein, research assistant at the SLK department, checks the thickness of an organic sheet.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).