idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.02.2021 18:04

Researchers have broken the code for cell communication

Ulrika Lundin, press officer, Gothenburg University, +46 31-786 6705 Kommunikationsavdelningen / Communications Department
Schwedischer Forschungsrat - The Swedish Research Council

    Knowledge on how cells communicate is an important key to understanding many biological systems and diseases. A research team led by researchers at the University of Gothenburg has now used a unique combination of methods to map the mechanism behind cellular communication. Their findings can potentially improve understanding of the underlying mechanism behind type 2 diabetes.

    We know that human communication is important, but communication between the cells in our bodies is just as vital. The processes where cells synchronize and coordinate their behaviour is required for an organism to function and for human organs to be able to perform their functions.

    “How do cells go from monologues to dialogues? What happens in the transition from each one doing its own thing to coordinating with the others? We need to better understand this complex and difficult-to-study behaviour,” says Caroline Beck Adiels, senior lecturer at the Department of Physics at the University of Gothenburg.

    Have found the mechanism behind cellular communication
    She is responsible for the study now published in the scientific journal PNAS, in which the researchers established a method for studying cellular communication. In the study, they successfully mapped the mechanism behind cellular communication in the metabolic process, using small culture chambers that allow the control of the environment around the cells.

    The researchers chose to study yeast cells, since they are similar to human cells, and their focus is on glycolytic oscillations – a series of chemical reactions during metabolism where the concentration of substances can pulse or oscillate. The study showed how cells that initially oscillated independent of each other shifted to being more synchronized, creating partially synchronized populations of cells.

    “One of the unique things with this study is that we have been able to study individual cells instead of simply entire cell populations. This has allowed us to really be able to see how the cells transition from their individual behaviour to coordinating with their neighbours. We have been able to map their behaviour both temporally and spatially, that is to say, when something occurs and in which cell,” says Beck Adiels.

    Opens up opportunities for understanding type 2 diabetes
    According to Beck Adiels, this knowledge can be applied in many other biological systems and more complex cells where coordinated cell behaviour plays an important role. This type of behaviour is found in such cells as heart muscle cells and in pancreas cells, which can be an important piece of the puzzle in diabetes research.

    “The study can contribute to understanding how pancreas cells are regulated and how they secrete insulin, which can help us understand the underlying mechanism behind type 2 diabetes. Eventually, this could contribute to developing new medicines for treating the disease.”

    The study is a collaboration between eight researchers at Swedish and international universities, and Caroline Beck Adiels emphasizes that this interdisciplinary collaboration has been a major help in studying the complex behaviour of cells from multiple perspectives.

    “I am very proud of this work, which had not been possible to complete if we had not collaborated across disciplines,” she says.

    Facts about the research and methodology
    • The researchers mapped the mechanism behind cellular communication in the metabolic process. Yeast cells were chosen since they have many similarities to human cells and can be used as a model organism.
    • By using small culture chambers (a microfluidic device), yeast cells can be studied under the microscope while controlling the environment around them. The chamber can be designed so the cells are in a single layer, allowing them to be studied individually.
    • Thanks to one of the substances in the metabolic chain being autofluorescent, i.e., it emits a weak glow when the cell is illuminated at a specific wavelength, the researchers can see how the cells communicate and synchronize.
    • The experimental results have been verified with a detailed mathematical model of the glycolytic reactions, which has been applied to each individual cell. Software has also been developed from the ground up to study the brain’s various connections. This was used to confirm both experimental and theoretical data, but it also gave the researchers a tool to stage several situations of complex cellular communication.


    Wissenschaftliche Ansprechpartner:

    Contact and more information:
    Caroline Beck Adiels, Department of Physics, University of Gothenburg, email: caroline.adiels@physics.gu.se


    Originalpublikation:

    The study’s title: Intercellular communication induces glycolytic synchronization waves between individually oscillating cells
    Digital publication: https://www.pnas.org/content/118/6/e2010075118
    Scientific journal: PNAS, Proceedings of the National Academy of Sciences of the United States of America
    Co-authors: Martin Mojica-Benavides, David D. van Niekerk, Mite Mijalkov, Jacky L. Snoep, Bernhard Mehlig, Giovanni Volpe, Mattias Goksör and Caroline B. Adiels


    Weitere Informationen:

    https://www.pnas.org/content/118/6/e2010075118


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).