idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
15.02.2021 09:15

Intelligente Gesundheitshelfer für unterwegs

Thomas Kolbinger Presse- und Öffentlichkeitsarbeit
Hochschule Landshut

    Ein neues Forschungsprojekt an der Hochschule Landshut will Wearables für medizinische Anwendungen verbessern und exaktere Messungen der tragbaren Minicomputer ermöglichen. Damit könnten sie beispielsweise Herz-Kreislauf-Erkrankungen diagnostizieren, bevor die Betroffenen es selbst merken, und eine schnellere Behandlung ermöglichen.

    Herz-Kreislauf-Erkrankungen sind die häufigste Todesursache in Deutschland. Medizinische Wearables, die in Echtzeit vitale Parameter wie Blutdruck, Herzfrequenz und Sauerstoffgehalt im Blut messen, könnten helfen, diese Krankheiten frühzeitig zu erkennen und präventiv zu behandeln. Im Alltag oder beim Sport erfreuen sich die kleinen, tragbaren Minicomputer in Form von Fitnessarmbändern oder Smartwatches schon großer Beliebtheit. Auch in der Medizin werden sie mittlerweile immer häufiger eingesetzt. Das Problem ist hier allerdings, dass die mobilen Systeme nicht immer frei von Fehlern sind. So werden in den meisten Wearables Vitalparameter mithilfe des sogenannten PPG-Verfahrens (Photoplethysmographie) gemessen. Dabei kann es zu Signalstörungen kommen, wenn beispielsweise die Sensoren bei Bewegungen verrutschen. Die Medizin ist jedoch auf zuverlässige Messungen angewiesen. Genau hier setzt das neue Forschungsprojekt „Deep-PPG“ an der Hochschule Landshut unter Leitung von Prof. Dr. Andreas Breidenassel, an. Sein Ziel ist es, die Störanfälligkeit des PPG-Signals zu reduzieren und damit exaktere Messungen von Wearables in medizinischen Anwendungen zu ermöglichen. Am Projekt beteiligt ist das Unternehmen OSRAM Opto Semiconductors. Das Bayerische Staatsministerium für Wissenschaft und Kunst fördert das Vorhaben mit 250.000 Euro.

    Frühwarnsystem to go

    „Wenn wir die Sensoren weiterentwickeln und die Datenqualität der Wearables verbessern, können diese Daten in Zukunft immer besser zur Diagnose genutzt werden“, erklärt Breidenassel. Dabei sei es wichtig, dass die Wearables nicht nur Risikopatienten überwachen, sondern auch Daten von bislang gesunden Menschen in Alltagssituationen auswerten. So könnten sie als Frühwarnsystem dienen und Krankheiten diagnostizieren, bevor die Betroffenen es selbst merken. Dies ermögliche eine schnellere Behandlung. Das technische Prinzip hinter den medizinischen Wearables basiert dabei auf einer optischen Messung: Leuchtdioden (LEDs) senden grünes, rotes oder infrarotes Licht aus. Dieses Licht durchstrahlt das Gewebe oder wird an der Hautoberfläche reflektiert und trifft anschließend auf einen Fotodetektor. Mithilfe dieses Signals lässt sich dann beispielsweise die Herzfrequenz oder die Sauerstoffsättigung im Blut ableiten.

    Verbesserung der Datenqualität

    Bewegungsartefakte und unterschiedliche Hauttypen können die Genauigkeit der Messungen allerdings immens beeinflussen. Um diese Störungen zu verringern und die Datenqualität zu verbessern, untersucht Breidenassel zusammen mit seiner Kollegin Prof. Dr. Stefanie Remmele und dem wissenschaftlichen Mitarbeiter Maximilian Reiser zwei Ansätze: „Zum einen wollen wir mehrere Lichtquellen und Sensoren an unterschiedlichen Positionen einsetzen und die anfallenden Daten mithilfe von Algorithmen in Echtzeit analysieren“, erläutert Reiser, „damit ist die Wahrscheinlichkeit höher, dass wir auch in der Bewegung ein auswertbares Signal erhalten.“ Die Herausforderung bestehe allerdings darin, dass das System in Echtzeit erkennen muss, welche Licht-Sensor-Kombination gerade das beste Signal liefert. Dazu entwickeln die Forschenden einen intelligenten Algorithmus und füttern diesen anhand von Probandenstudien mit riesigen Datenmengen, um ihn zu trainieren.

    Multi-Lichtquellen, Algorithmen und Laserdioden

    Beim zweiten Ansatz ersetzt das Forscherteam die LEDs durch sogenannte Vertical-Cavity Surface-Emitting-Laser (VCSEL), die vermehrt in Smartphones zum Einsatz kommen. Ihr Vorteil: Die geringe Strahldivergenz könnte zu einer effizienteren Nutzung, geringerem Streulicht und damit zu einer robusteren Signalerfassung gegenüber Störungen führen. „Gerade in der Kombination dieser Ansätze – Multi-Lichtquellen, intelligente Algorithmen und Einsatz von Laserdioden – versprechen wir uns eine deutliche Verbesserungen der Datenqualität“, so Breidenassel. Sollte das gelingen, wäre das ein großer Nutzen für Gesellschaft und Medizin: „Das PPG-Verfahren ist eine einfache, kostengünstige Messtechnik und erfasst wichtige, gesundheitsbezogene Daten. Gleichzeitig halten Wearables immer stärkeren Einzug in unseren Alltag. Daher macht es Sinn, diesen Trend für die Medizin zu nutzen.“

    Über die Hochschule Landshut
    Die Hochschule Landshut steht für exzellente Lehre, Weiterbildung und angewandte Forschung. Die sechs Fakultäten Betriebswirtschaft, Elektrotechnik und Wirtschaftsingenieurwesen, Informatik, Interdisziplinäre Studien, Maschinenbau und Soziale Arbeit bieten über 30 Studiengänge an. Das Angebot ist klar auf aktuelle und künftige Anforderungen des Arbeitsmarktes ausgerichtet. Die rund 5.000 Studierenden profitieren vom Praxisbezug der Lehre, der individuellen Betreuung und der modernen technischen Ausstattung. Für Forschungseinrichtungen und Unternehmen bietet die Hochschule eine breite Palette an Projektthemen, die von wissenschaftlichen Fachkräften mit bestem Know-how betreut und umgesetzt werden. Über 118 Professorinnen und Professoren nehmen Aufgaben in Lehre und Forschung wahr.


    Über das Projekt
    Das Projekt Deep-PPG läuft bis Ende 2023 und wird von der Hochschule Landshut in Kooperation mit dem Unternehmen OSRAM Opto Semiconductors durchgeführt. Die Projektleitung liegt bei Prof. Dr. Andreas Breidenassel. Das Bayerische Staatsministerium für Wissenschaft und Kunst fördert das Vorhaben mit insgesamt 250.000 Euro.


    Bilder

    Maximilian Reiser und Prof. Dr. Andreas Breidenassel (v.l.) wollen in Zukunft exaktere Messungen von Wearables in medizinischen Anwendungen ermöglichen.
    Maximilian Reiser und Prof. Dr. Andreas Breidenassel (v.l.) wollen in Zukunft exaktere Messungen von ...
    Veronika Barnerßoi
    Hochschule Landshut

    andelsübliche Wearables in Form von Armbanduhren oder Fitnessarmbändern werden bisher vor allem im Alltag genutzt. Für medizinische Zwecke sind die Messungen allerdings zu ungenau.
    andelsübliche Wearables in Form von Armbanduhren oder Fitnessarmbändern werden bisher vor allem im A ...
    Veronika Barnerßoi
    Hochschule Landshut


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Medizin
    überregional
    Forschungsprojekte
    Deutsch


     

    Maximilian Reiser und Prof. Dr. Andreas Breidenassel (v.l.) wollen in Zukunft exaktere Messungen von Wearables in medizinischen Anwendungen ermöglichen.


    Zum Download

    x

    andelsübliche Wearables in Form von Armbanduhren oder Fitnessarmbändern werden bisher vor allem im Alltag genutzt. Für medizinische Zwecke sind die Messungen allerdings zu ungenau.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).